import os import tempfile import unittest from copy import deepcopy import matplotlib.pyplot as plt import numpy as np from PIL import Image import gradio as gr from gradio import media_data os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" class ImagePreprocessing(unittest.TestCase): def test_decode_base64_to_image(self): output_image = gr.processing_utils.decode_base64_to_image( deepcopy(media_data.BASE64_IMAGE) ) self.assertIsInstance(output_image, Image.Image) def test_encode_url_or_file_to_base64(self): output_base64 = gr.processing_utils.encode_url_or_file_to_base64( "gradio/test_data/test_image.png" ) self.assertEquals(output_base64, deepcopy(media_data.BASE64_IMAGE)) def test_encode_file_to_base64(self): output_base64 = gr.processing_utils.encode_file_to_base64( "gradio/test_data/test_image.png" ) self.assertEquals(output_base64, deepcopy(media_data.BASE64_IMAGE)) def test_encode_url_to_base64(self): output_base64 = gr.processing_utils.encode_url_to_base64( "https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/test_data/test_image.png" ) self.assertEqual(output_base64, deepcopy(media_data.BASE64_IMAGE)) def test_encode_plot_to_base64(self): plt.plot([1, 2, 3, 4]) output_base64 = gr.processing_utils.encode_plot_to_base64(plt) self.assertTrue( output_base64.startswith("") ) def test_encode_array_to_base64(self): img = Image.open("gradio/test_data/test_image.png") img = img.convert("RGB") numpy_data = np.asarray(img, dtype=np.uint8) output_base64 = gr.processing_utils.encode_array_to_base64(numpy_data) self.assertEqual(output_base64, deepcopy(media_data.ARRAY_TO_BASE64_IMAGE)) def test_resize_and_crop(self): img = Image.open("gradio/test_data/test_image.png") new_img = gr.processing_utils.resize_and_crop(img, (20, 20)) self.assertEqual(new_img.size, (20, 20)) self.assertRaises( ValueError, gr.processing_utils.resize_and_crop, **{"img": img, "size": (20, 20), "crop_type": "test"} ) class AudioPreprocessing(unittest.TestCase): def test_audio_from_file(self): audio = gr.processing_utils.audio_from_file("gradio/test_data/test_audio.wav") self.assertEqual(audio[0], 22050) self.assertIsInstance(audio[1], np.ndarray) def test_audio_to_file(self): audio = gr.processing_utils.audio_from_file("gradio/test_data/test_audio.wav") gr.processing_utils.audio_to_file(audio[0], audio[1], "test_audio_to_file") self.assertTrue(os.path.exists("test_audio_to_file")) os.remove("test_audio_to_file") class OutputPreprocessing(unittest.TestCase): def test_decode_base64_to_binary(self): binary = gr.processing_utils.decode_base64_to_binary( deepcopy(media_data.BASE64_IMAGE) ) self.assertEqual(deepcopy(media_data.BINARY_IMAGE), binary) def test_decode_base64_to_file(self): temp_file = gr.processing_utils.decode_base64_to_file( deepcopy(media_data.BASE64_IMAGE) ) self.assertIsInstance(temp_file, tempfile._TemporaryFileWrapper) def test_create_tmp_copy_of_file(self): temp_file = gr.processing_utils.create_tmp_copy_of_file("test.txt") self.assertIsInstance(temp_file, tempfile._TemporaryFileWrapper) float_dtype_list = [ float, float, np.double, np.single, np.float32, np.float64, "float32", "float64", ] def test_float_conversion_dtype(self): """Test any convertion from a float dtype to an other.""" x = np.array([-1, 1]) # Test all combinations of dtypes conversions dtype_combin = np.array( np.meshgrid( OutputPreprocessing.float_dtype_list, OutputPreprocessing.float_dtype_list, ) ).T.reshape(-1, 2) for dtype_in, dtype_out in dtype_combin: x = x.astype(dtype_in) y = gr.processing_utils._convert(x, dtype_out) assert y.dtype == np.dtype(dtype_out) def test_subclass_conversion(self): """Check subclass conversion behavior""" x = np.array([-1, 1]) for dtype in OutputPreprocessing.float_dtype_list: x = x.astype(dtype) y = gr.processing_utils._convert(x, np.floating) assert y.dtype == x.dtype if __name__ == "__main__": unittest.main()