import tensorflow as tf import sys sys.path.insert(1, '../gradio') import gradio from tensorflow.keras.layers import * from tensorflow.keras import backend as K (x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train, x_test = x_train.reshape(-1,784) / 255.0, x_test.reshape(-1,784) / 255.0 def get_trained_model(n): model = tf.keras.models.Sequential() model.add(Reshape((28, 28, 1), input_shape=(784,))) model.add(Conv2D(32, kernel_size=(3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train[:n], y_train[:n], epochs=2) print(model.evaluate(x_test, y_test)) return model def saliency(interface, model, input, processed_input, output, processed_output): with interface.graph.as_default(): with interface.sess.as_default(): output = output.argmax() input_tensors = [model.inputs[0], K.learning_phase()] saliency_input = model.layers[0].input saliency_output = model.layers[-1].output[:, output] gradients = model.optimizer.get_gradients(saliency_output, saliency_input) compute_gradients = K.function(inputs=input_tensors, outputs=gradients) saliency_graph = compute_gradients(processed_input.reshape(-1, 784)) normalized_saliency = (abs(saliency_graph[0]) - abs(saliency_graph[0]).min()) / \ (abs(saliency_graph[0]).max() - abs(saliency_graph[0]).min()) return normalized_saliency.reshape(28, 28) model = get_trained_model(n=50000) sketchpad = gradio.inputs.Sketchpad(flatten=True, sample_inputs=x_test[:10]) io = gradio.Interface(inputs=sketchpad, outputs="label", model=model, model_type="keras", saliency=saliency, always_flag=True, interactivity_disabled=True) httpd, path_to_local_server, share_url = io.launch(inline=True, share=True, inbrowser=True) print("URL for MNIST model interface with saliency:", share_url)