mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
Blocks-Components
- move Dataframe component
This commit is contained in:
parent
4121447cf3
commit
fbca310ccb
@ -10,6 +10,7 @@ from types import ModuleType
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import PIL
|
||||
from ffmpy import FFmpeg
|
||||
|
||||
@ -1690,3 +1691,169 @@ class File(Component):
|
||||
|
||||
def restore_flagged(self, dir, data, encryption_key):
|
||||
return self.restore_flagged_file(dir, data, encryption_key)
|
||||
|
||||
|
||||
class Dataframe(Component):
|
||||
"""
|
||||
Component accepts or displays 2D input through a spreadsheet interface.
|
||||
|
||||
Input or Output type: Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]
|
||||
Demos: filter_records, matrix_transpose, tax_calculator
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
default: Optional[List[List[Any]]] = None,
|
||||
*,
|
||||
headers: Optional[List[str]] = None,
|
||||
row_count: int = 3,
|
||||
col_count: Optional[int] = 3,
|
||||
datatype: str | List[str] = "str",
|
||||
col_width: int | List[int] = None,
|
||||
type: str = "pandas",
|
||||
label: Optional[str] = None,
|
||||
max_rows: Optional[int] = 20,
|
||||
max_cols: Optional[int] = None,
|
||||
overflow_row_behaviour: str = "paginate",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Input Parameters:
|
||||
default (List[List[Any]]): Default value
|
||||
headers (List[str]): Header names to dataframe. If None, no headers are shown.
|
||||
row_count (int): Limit number of rows for input.
|
||||
col_count (int): Limit number of columns for input. If equal to 1, return data will be one-dimensional. Ignored if `headers` is provided.
|
||||
datatype (Union[str, List[str]]): Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", and "date".
|
||||
col_width (Union[int, List[int]]): Width of columns in pixels. Can be provided as single value or list of values per column.
|
||||
type (str): Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array.
|
||||
label (str): component name in interface.
|
||||
|
||||
Output Parameters: #TODO:(faruk) might converge these in the future
|
||||
headers (List[str]): Header names to dataframe. Only applicable if type is "numpy" or "array".
|
||||
max_rows (int): Maximum number of rows to display at once. Set to None for infinite.
|
||||
max_cols (int): Maximum number of columns to display at once. Set to None for infinite.
|
||||
overflow_row_behaviour (str): If set to "paginate", will create pages for overflow rows. If set to "show_ends", will show initial and final rows and truncate middle rows.
|
||||
type (str): Type of value to be passed to component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for Python array, "auto" detects return type.
|
||||
"""
|
||||
self.headers = headers
|
||||
self.datatype = datatype
|
||||
self.row_count = row_count
|
||||
self.col_count = len(headers) if headers else col_count
|
||||
self.col_width = col_width
|
||||
self.type = type
|
||||
self.default = (
|
||||
default
|
||||
if default is not None
|
||||
else [[None for _ in range(self.col_count)] for _ in range(self.row_count)]
|
||||
)
|
||||
sample_values = {
|
||||
"str": "abc",
|
||||
"number": 786,
|
||||
"bool": True,
|
||||
"date": "02/08/1993",
|
||||
}
|
||||
column_dtypes = (
|
||||
[datatype] * self.col_count if isinstance(datatype, str) else datatype
|
||||
)
|
||||
self.test_input = [
|
||||
[sample_values[c] for c in column_dtypes] for _ in range(row_count)
|
||||
]
|
||||
self.max_rows = max_rows
|
||||
self.max_cols = max_cols
|
||||
self.overflow_row_behaviour = overflow_row_behaviour
|
||||
super().__init__(label=label, **kwargs)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"headers": self.headers,
|
||||
"datatype": self.datatype,
|
||||
"row_count": self.row_count,
|
||||
"col_count": self.col_count,
|
||||
"col_width": self.col_width,
|
||||
"default": self.default,
|
||||
"max_rows": self.max_rows,
|
||||
"max_cols": self.max_cols,
|
||||
"overflow_row_behaviour": self.overflow_row_behaviour,
|
||||
**super().get_template_context(),
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"dataframe": {"type": "pandas"},
|
||||
"numpy": {"type": "numpy"},
|
||||
"matrix": {"type": "array"},
|
||||
"list": {"type": "array", "col_count": 1},
|
||||
}
|
||||
|
||||
def preprocess(self, x: List[List[str | Number | bool]]):
|
||||
"""
|
||||
Parameters:
|
||||
x (List[List[Union[str, number, bool]]]): 2D array of str, numeric, or bool data
|
||||
Returns:
|
||||
(Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]): Dataframe in requested format
|
||||
"""
|
||||
if self.type == "pandas":
|
||||
if self.headers:
|
||||
return pd.DataFrame(x, columns=self.headers)
|
||||
else:
|
||||
return pd.DataFrame(x)
|
||||
if self.col_count == 1:
|
||||
x = [row[0] for row in x]
|
||||
if self.type == "numpy":
|
||||
return np.array(x)
|
||||
elif self.type == "array":
|
||||
return x
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown type: "
|
||||
+ str(self.type)
|
||||
+ ". Please choose from: 'pandas', 'numpy', 'array'."
|
||||
)
|
||||
|
||||
def save_flagged(self, dir, label, data, encryption_key):
|
||||
"""
|
||||
Returns: (List[List[Union[str, float]]]) 2D array
|
||||
"""
|
||||
return json.dumps(data)
|
||||
# TODO: (faruk) output was dumping differently, how to converge?
|
||||
# return json.dumps(data["data"])
|
||||
|
||||
def restore_flagged(self, dir, data, encryption_key):
|
||||
return json.loads(data)
|
||||
# TODO: (faruk) output was dumping differently, how to converge?
|
||||
# return {"data": json.loads(data)}
|
||||
|
||||
def generate_sample(self):
|
||||
return [[1, 2, 3], [4, 5, 6]]
|
||||
|
||||
def postprocess(self, y):
|
||||
"""
|
||||
Parameters:
|
||||
y (Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]): dataframe in given format
|
||||
Returns:
|
||||
(Dict[headers: List[str], data: List[List[Union[str, number]]]]): JSON object with key 'headers' for list of header names, 'data' for 2D array of string or numeric data
|
||||
"""
|
||||
if self.type == "auto":
|
||||
if isinstance(y, pd.core.frame.DataFrame):
|
||||
dtype = "pandas"
|
||||
elif isinstance(y, np.ndarray):
|
||||
dtype = "numpy"
|
||||
elif isinstance(y, list):
|
||||
dtype = "array"
|
||||
else:
|
||||
dtype = self.type
|
||||
if dtype == "pandas":
|
||||
return {"headers": list(y.columns), "data": y.values.tolist()}
|
||||
elif dtype in ("numpy", "array"):
|
||||
if dtype == "numpy":
|
||||
y = y.tolist()
|
||||
if len(y) == 0 or not isinstance(y[0], list):
|
||||
y = [y]
|
||||
return {"data": y}
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown type: "
|
||||
+ self.type
|
||||
+ ". Please choose from: 'pandas', 'numpy', 'array'."
|
||||
)
|
||||
|
160
gradio/inputs.py
160
gradio/inputs.py
@ -23,6 +23,7 @@ from gradio.components import (
|
||||
Checkbox,
|
||||
CheckboxGroup,
|
||||
Component,
|
||||
Dataframe,
|
||||
Dropdown,
|
||||
File,
|
||||
Image,
|
||||
@ -389,6 +390,50 @@ class File(File):
|
||||
)
|
||||
|
||||
|
||||
class Dataframe(Dataframe):
|
||||
"""
|
||||
Component accepts 2D input through a spreadsheet interface.
|
||||
Input type: Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]
|
||||
Demos: filter_records, matrix_transpose, tax_calculator
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
headers: Optional[List[str]] = None,
|
||||
row_count: int = 3,
|
||||
col_count: Optional[int] = 3,
|
||||
datatype: str | List[str] = "str",
|
||||
col_width: int | List[int] = None,
|
||||
default: Optional[List[List[Any]]] = None,
|
||||
type: str = "pandas",
|
||||
label: Optional[str] = None,
|
||||
optional: bool = False,
|
||||
):
|
||||
"""
|
||||
Parameters:
|
||||
headers (List[str]): Header names to dataframe. If None, no headers are shown.
|
||||
row_count (int): Limit number of rows for input.
|
||||
col_count (int): Limit number of columns for input. If equal to 1, return data will be one-dimensional. Ignored if `headers` is provided.
|
||||
datatype (Union[str, List[str]]): Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", and "date".
|
||||
col_width (Union[int, List[int]]): Width of columns in pixels. Can be provided as single value or list of values per column.
|
||||
default (List[List[Any]]): Default value
|
||||
type (str): Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array.
|
||||
label (str): component name in interface.
|
||||
optional (bool): this parameter is ignored.
|
||||
"""
|
||||
super().__init__(
|
||||
headers=headers,
|
||||
row_count=row_count,
|
||||
col_count=col_count,
|
||||
datatype=datatype,
|
||||
col_width=col_width,
|
||||
default=default,
|
||||
type=type,
|
||||
label=label,
|
||||
optional=optional,
|
||||
)
|
||||
|
||||
|
||||
class InputComponent(Component):
|
||||
"""
|
||||
Input Component. All input components subclass this.
|
||||
@ -472,121 +517,6 @@ class InputComponent(Component):
|
||||
}
|
||||
|
||||
|
||||
class Dataframe(InputComponent):
|
||||
"""
|
||||
Component accepts 2D input through a spreadsheet interface.
|
||||
Input type: Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]
|
||||
Demos: filter_records, matrix_transpose, tax_calculator
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
headers: Optional[List[str]] = None,
|
||||
row_count: int = 3,
|
||||
col_count: Optional[int] = 3,
|
||||
datatype: str | List[str] = "str",
|
||||
col_width: int | List[int] = None,
|
||||
default: Optional[List[List[Any]]] = None,
|
||||
type: str = "pandas",
|
||||
label: Optional[str] = None,
|
||||
optional: bool = False,
|
||||
):
|
||||
"""
|
||||
Parameters:
|
||||
headers (List[str]): Header names to dataframe. If None, no headers are shown.
|
||||
row_count (int): Limit number of rows for input.
|
||||
col_count (int): Limit number of columns for input. If equal to 1, return data will be one-dimensional. Ignored if `headers` is provided.
|
||||
datatype (Union[str, List[str]]): Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", and "date".
|
||||
col_width (Union[int, List[int]]): Width of columns in pixels. Can be provided as single value or list of values per column.
|
||||
default (List[List[Any]]): Default value
|
||||
type (str): Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array.
|
||||
label (str): component name in interface.
|
||||
optional (bool): this parameter is ignored.
|
||||
"""
|
||||
self.headers = headers
|
||||
self.datatype = datatype
|
||||
self.row_count = row_count
|
||||
self.col_count = len(headers) if headers else col_count
|
||||
self.col_width = col_width
|
||||
self.type = type
|
||||
self.default = (
|
||||
default
|
||||
if default is not None
|
||||
else [[None for _ in range(self.col_count)] for _ in range(self.row_count)]
|
||||
)
|
||||
sample_values = {
|
||||
"str": "abc",
|
||||
"number": 786,
|
||||
"bool": True,
|
||||
"date": "02/08/1993",
|
||||
}
|
||||
column_dtypes = (
|
||||
[datatype] * self.col_count if isinstance(datatype, str) else datatype
|
||||
)
|
||||
self.test_input = [
|
||||
[sample_values[c] for c in column_dtypes] for _ in range(row_count)
|
||||
]
|
||||
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"headers": self.headers,
|
||||
"datatype": self.datatype,
|
||||
"row_count": self.row_count,
|
||||
"col_count": self.col_count,
|
||||
"col_width": self.col_width,
|
||||
"default": self.default,
|
||||
**super().get_template_context(),
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"dataframe": {"type": "pandas"},
|
||||
"numpy": {"type": "numpy"},
|
||||
"matrix": {"type": "array"},
|
||||
"list": {"type": "array", "col_count": 1},
|
||||
}
|
||||
|
||||
def preprocess(self, x: List[List[str | Number | bool]]):
|
||||
"""
|
||||
Parameters:
|
||||
x (List[List[Union[str, number, bool]]]): 2D array of str, numeric, or bool data
|
||||
Returns:
|
||||
(Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]): Dataframe in requested format
|
||||
"""
|
||||
if self.type == "pandas":
|
||||
if self.headers:
|
||||
return pd.DataFrame(x, columns=self.headers)
|
||||
else:
|
||||
return pd.DataFrame(x)
|
||||
if self.col_count == 1:
|
||||
x = [row[0] for row in x]
|
||||
if self.type == "numpy":
|
||||
return np.array(x)
|
||||
elif self.type == "array":
|
||||
return x
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown type: "
|
||||
+ str(self.type)
|
||||
+ ". Please choose from: 'pandas', 'numpy', 'array'."
|
||||
)
|
||||
|
||||
def save_flagged(self, dir, label, data, encryption_key):
|
||||
"""
|
||||
Returns: (List[List[Union[str, float]]]) 2D array
|
||||
"""
|
||||
return json.dumps(data)
|
||||
|
||||
def restore_flagged(self, dir, data, encryption_key):
|
||||
return json.loads(data)
|
||||
|
||||
def generate_sample(self):
|
||||
return [[1, 2, 3], [4, 5, 6]]
|
||||
|
||||
|
||||
class Timeseries(InputComponent):
|
||||
"""
|
||||
Component accepts pandas.DataFrame uploaded as a timeseries csv file.
|
||||
|
@ -21,7 +21,7 @@ import PIL
|
||||
from ffmpy import FFmpeg
|
||||
|
||||
from gradio import processing_utils
|
||||
from gradio.components import Audio, Component, File, Image, Textbox, Video
|
||||
from gradio.components import Audio, Component, Dataframe, File, Image, Textbox, Video
|
||||
|
||||
if TYPE_CHECKING: # Only import for type checking (is False at runtime).
|
||||
from gradio import Interface
|
||||
@ -124,6 +124,45 @@ class File(File):
|
||||
super().__init__(label=label)
|
||||
|
||||
|
||||
class Dataframe(Dataframe):
|
||||
"""
|
||||
Component displays 2D output through a spreadsheet interface.
|
||||
Output type: Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]
|
||||
Demos: filter_records, matrix_transpose, fraud_detector
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
headers: Optional[List[str]] = None,
|
||||
max_rows: Optional[int] = 20,
|
||||
max_cols: Optional[int] = None,
|
||||
overflow_row_behaviour: str = "paginate",
|
||||
type: str = "auto",
|
||||
label: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Parameters:
|
||||
headers (List[str]): Header names to dataframe. Only applicable if type is "numpy" or "array".
|
||||
max_rows (int): Maximum number of rows to display at once. Set to None for infinite.
|
||||
max_cols (int): Maximum number of columns to display at once. Set to None for infinite.
|
||||
overflow_row_behaviour (str): If set to "paginate", will create pages for overflow rows. If set to "show_ends", will show initial and final rows and truncate middle rows.
|
||||
type (str): Type of value to be passed to component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for Python array, "auto" detects return type.
|
||||
label (str): component name in interface.
|
||||
"""
|
||||
warnings.warn(
|
||||
"Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components",
|
||||
DeprecationWarning,
|
||||
)
|
||||
super().__init__(
|
||||
headers=headers,
|
||||
max_rows=max_rows,
|
||||
max_cols=max_cols,
|
||||
overflow_row_behaviour=overflow_row_behaviour,
|
||||
type=type,
|
||||
label=label,
|
||||
)
|
||||
|
||||
|
||||
class OutputComponent(Component):
|
||||
"""
|
||||
Output Component. All output components subclass this.
|
||||
@ -417,94 +456,6 @@ class HTML(OutputComponent):
|
||||
}
|
||||
|
||||
|
||||
class Dataframe(OutputComponent):
|
||||
"""
|
||||
Component displays 2D output through a spreadsheet interface.
|
||||
Output type: Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]
|
||||
Demos: filter_records, matrix_transpose, fraud_detector
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
headers: Optional[List[str]] = None,
|
||||
max_rows: Optional[int] = 20,
|
||||
max_cols: Optional[int] = None,
|
||||
overflow_row_behaviour: str = "paginate",
|
||||
type: str = "auto",
|
||||
label: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Parameters:
|
||||
headers (List[str]): Header names to dataframe. Only applicable if type is "numpy" or "array".
|
||||
max_rows (int): Maximum number of rows to display at once. Set to None for infinite.
|
||||
max_cols (int): Maximum number of columns to display at once. Set to None for infinite.
|
||||
overflow_row_behaviour (str): If set to "paginate", will create pages for overflow rows. If set to "show_ends", will show initial and final rows and truncate middle rows.
|
||||
type (str): Type of value to be passed to component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for Python array, "auto" detects return type.
|
||||
label (str): component name in interface.
|
||||
"""
|
||||
self.headers = headers
|
||||
self.max_rows = max_rows
|
||||
self.max_cols = max_cols
|
||||
self.overflow_row_behaviour = overflow_row_behaviour
|
||||
self.type = type
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"headers": self.headers,
|
||||
"max_rows": self.max_rows,
|
||||
"max_cols": self.max_cols,
|
||||
"overflow_row_behaviour": self.overflow_row_behaviour,
|
||||
**super().get_template_context(),
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"dataframe": {},
|
||||
"numpy": {"type": "numpy"},
|
||||
"matrix": {"type": "array"},
|
||||
"list": {"type": "array"},
|
||||
}
|
||||
|
||||
def postprocess(self, y):
|
||||
"""
|
||||
Parameters:
|
||||
y (Union[pandas.DataFrame, numpy.array, List[Union[str, float]], List[List[Union[str, float]]]]): dataframe in given format
|
||||
Returns:
|
||||
(Dict[headers: List[str], data: List[List[Union[str, number]]]]): JSON object with key 'headers' for list of header names, 'data' for 2D array of string or numeric data
|
||||
"""
|
||||
if self.type == "auto":
|
||||
if isinstance(y, pd.core.frame.DataFrame):
|
||||
dtype = "pandas"
|
||||
elif isinstance(y, np.ndarray):
|
||||
dtype = "numpy"
|
||||
elif isinstance(y, list):
|
||||
dtype = "array"
|
||||
else:
|
||||
dtype = self.type
|
||||
if dtype == "pandas":
|
||||
return {"headers": list(y.columns), "data": y.values.tolist()}
|
||||
elif dtype in ("numpy", "array"):
|
||||
if dtype == "numpy":
|
||||
y = y.tolist()
|
||||
if len(y) == 0 or not isinstance(y[0], list):
|
||||
y = [y]
|
||||
return {"data": y}
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown type: "
|
||||
+ self.type
|
||||
+ ". Please choose from: 'pandas', 'numpy', 'array'."
|
||||
)
|
||||
|
||||
def save_flagged(self, dir, label, data, encryption_key):
|
||||
return json.dumps(data["data"])
|
||||
|
||||
def restore_flagged(self, dir, data, encryption_key):
|
||||
return {"data": json.loads(data)}
|
||||
|
||||
|
||||
class Carousel(OutputComponent):
|
||||
"""
|
||||
Component displays a set of output components that can be scrolled through.
|
||||
|
Loading…
Reference in New Issue
Block a user