mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
Merge pull request #164 from gradio-app/abidlabs/smaller
Abidlabs/smaller
This commit is contained in:
commit
f676273426
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 1.0
|
||||
Name: gradio
|
||||
Version: 1.7.0
|
||||
Version: 1.7.1
|
||||
Summary: Python library for easily interacting with trained machine learning models
|
||||
Home-page: https://github.com/gradio-app/gradio-UI
|
||||
Author: Abubakar Abid
|
||||
|
@ -6,12 +6,8 @@ flask-cachebuster
|
||||
Flask-Login
|
||||
paramiko
|
||||
scipy
|
||||
IPython
|
||||
scikit-image
|
||||
analytics-python
|
||||
pandas
|
||||
ffmpy
|
||||
librosa
|
||||
colorama>=0.3.9
|
||||
markdown2
|
||||
pycryptodome
|
||||
|
@ -14,7 +14,6 @@ from gradio.component import Component
|
||||
import base64
|
||||
import numpy as np
|
||||
import PIL
|
||||
from skimage.segmentation import slic
|
||||
import scipy.io.wavfile
|
||||
from gradio import processing_utils, test_data
|
||||
import pandas as pd
|
||||
@ -678,6 +677,11 @@ class Image(InputComponent):
|
||||
if self.shape is not None:
|
||||
x = processing_utils.resize_and_crop(x, self.shape)
|
||||
image = np.array(x)
|
||||
try:
|
||||
from skimage.segmentation import slic
|
||||
except ImportError:
|
||||
print("Running default interpretation for images requires scikit-image, please install it first.")
|
||||
return
|
||||
segments_slic = slic(image, self.interpretation_segments, compactness=10, sigma=1)
|
||||
leave_one_out_tokens, masks = [], []
|
||||
replace_color = np.mean(image, axis=(0, 1))
|
||||
|
@ -456,15 +456,18 @@ class Interface:
|
||||
if inline is None:
|
||||
inline = utils.ipython_check()
|
||||
if inline:
|
||||
from IPython.display import IFrame, display
|
||||
# Embed the remote interface page if on google colab; otherwise, embed the local page.
|
||||
print(strings.en["INLINE_DISPLAY_BELOW"])
|
||||
if share:
|
||||
while not networking.url_ok(share_url):
|
||||
time.sleep(1)
|
||||
display(IFrame(share_url, width=1000, height=500))
|
||||
else:
|
||||
display(IFrame(path_to_local_server, width=1000, height=500))
|
||||
try:
|
||||
from IPython.display import IFrame, display
|
||||
# Embed the remote interface page if on google colab; otherwise, embed the local page.
|
||||
print(strings.en["INLINE_DISPLAY_BELOW"])
|
||||
if share:
|
||||
while not networking.url_ok(share_url):
|
||||
time.sleep(1)
|
||||
display(IFrame(share_url, width=1000, height=500))
|
||||
else:
|
||||
display(IFrame(path_to_local_server, width=1000, height=500))
|
||||
except ImportError:
|
||||
pass # IPython is not available so does not print inline.
|
||||
|
||||
send_launch_analytics(analytics_enabled=self.analytics_enabled, inbrowser=inbrowser, is_colab=is_colab,
|
||||
share=share, share_url=share_url)
|
||||
|
@ -5,7 +5,6 @@ import tempfile
|
||||
import scipy.io.wavfile
|
||||
from scipy.fftpack import dct
|
||||
import numpy as np
|
||||
import skimage
|
||||
from gradio import encryptor
|
||||
|
||||
#########################
|
||||
@ -37,7 +36,7 @@ def encode_plot_to_base64(plt):
|
||||
|
||||
def encode_array_to_base64(image_array):
|
||||
with BytesIO() as output_bytes:
|
||||
PIL_image = Image.fromarray(skimage.img_as_ubyte(image_array))
|
||||
PIL_image = Image.fromarray(_convert(image_array, np.uint8, force_copy=False))
|
||||
PIL_image.save(output_bytes, 'PNG')
|
||||
bytes_data = output_bytes.getvalue()
|
||||
base64_str = str(base64.b64encode(bytes_data), 'utf-8')
|
||||
@ -92,6 +91,290 @@ def decode_base64_to_file(encoding, encryption_key=None):
|
||||
file_obj.flush()
|
||||
return file_obj
|
||||
|
||||
def _convert(image, dtype, force_copy=False, uniform=False):
|
||||
"""
|
||||
Adapted from: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/dtype.py#L510-L531
|
||||
|
||||
Convert an image to the requested data-type.
|
||||
Warnings are issued in case of precision loss, or when negative values
|
||||
are clipped during conversion to unsigned integer types (sign loss).
|
||||
Floating point values are expected to be normalized and will be clipped
|
||||
to the range [0.0, 1.0] or [-1.0, 1.0] when converting to unsigned or
|
||||
signed integers respectively.
|
||||
Numbers are not shifted to the negative side when converting from
|
||||
unsigned to signed integer types. Negative values will be clipped when
|
||||
converting to unsigned integers.
|
||||
Parameters
|
||||
----------
|
||||
image : ndarray
|
||||
Input image.
|
||||
dtype : dtype
|
||||
Target data-type.
|
||||
force_copy : bool, optional
|
||||
Force a copy of the data, irrespective of its current dtype.
|
||||
uniform : bool, optional
|
||||
Uniformly quantize the floating point range to the integer range.
|
||||
By default (uniform=False) floating point values are scaled and
|
||||
rounded to the nearest integers, which minimizes back and forth
|
||||
conversion errors.
|
||||
.. versionchanged :: 0.15
|
||||
``_convert`` no longer warns about possible precision or sign
|
||||
information loss. See discussions on these warnings at:
|
||||
https://github.com/scikit-image/scikit-image/issues/2602
|
||||
https://github.com/scikit-image/scikit-image/issues/543#issuecomment-208202228
|
||||
https://github.com/scikit-image/scikit-image/pull/3575
|
||||
References
|
||||
----------
|
||||
.. [1] DirectX data conversion rules.
|
||||
https://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx
|
||||
.. [2] Data Conversions. In "OpenGL ES 2.0 Specification v2.0.25",
|
||||
pp 7-8. Khronos Group, 2010.
|
||||
.. [3] Proper treatment of pixels as integers. A.W. Paeth.
|
||||
In "Graphics Gems I", pp 249-256. Morgan Kaufmann, 1990.
|
||||
.. [4] Dirty Pixels. J. Blinn. In "Jim Blinn's corner: Dirty Pixels",
|
||||
pp 47-57. Morgan Kaufmann, 1998.
|
||||
"""
|
||||
dtype_range = {bool: (False, True),
|
||||
np.bool_: (False, True),
|
||||
np.bool8: (False, True),
|
||||
float: (-1, 1),
|
||||
np.float_: (-1, 1),
|
||||
np.float16: (-1, 1),
|
||||
np.float32: (-1, 1),
|
||||
np.float64: (-1, 1)}
|
||||
|
||||
def _dtype_itemsize(itemsize, *dtypes):
|
||||
"""Return first of `dtypes` with itemsize greater than `itemsize`
|
||||
Parameters
|
||||
----------
|
||||
itemsize: int
|
||||
The data type object element size.
|
||||
Other Parameters
|
||||
----------------
|
||||
*dtypes:
|
||||
Any Object accepted by `np.dtype` to be converted to a data
|
||||
type object
|
||||
Returns
|
||||
-------
|
||||
dtype: data type object
|
||||
First of `dtypes` with itemsize greater than `itemsize`.
|
||||
"""
|
||||
return next(dt for dt in dtypes if np.dtype(dt).itemsize >= itemsize)
|
||||
|
||||
def _dtype_bits(kind, bits, itemsize=1):
|
||||
"""Return dtype of `kind` that can store a `bits` wide unsigned int
|
||||
Parameters:
|
||||
kind: str
|
||||
Data type kind.
|
||||
bits: int
|
||||
Desired number of bits.
|
||||
itemsize: int
|
||||
The data type object element size.
|
||||
Returns
|
||||
-------
|
||||
dtype: data type object
|
||||
Data type of `kind` that can store a `bits` wide unsigned int
|
||||
"""
|
||||
|
||||
s = next(i for i in (itemsize, ) + (2, 4, 8) if
|
||||
bits < (i * 8) or (bits == (i * 8) and kind == 'u'))
|
||||
|
||||
return np.dtype(kind + str(s))
|
||||
|
||||
|
||||
def _scale(a, n, m, copy=True):
|
||||
"""Scale an array of unsigned/positive integers from `n` to `m` bits.
|
||||
Numbers can be represented exactly only if `m` is a multiple of `n`.
|
||||
Parameters
|
||||
----------
|
||||
a : ndarray
|
||||
Input image array.
|
||||
n : int
|
||||
Number of bits currently used to encode the values in `a`.
|
||||
m : int
|
||||
Desired number of bits to encode the values in `out`.
|
||||
copy : bool, optional
|
||||
If True, allocates and returns new array. Otherwise, modifies
|
||||
`a` in place.
|
||||
Returns
|
||||
-------
|
||||
out : array
|
||||
Output image array. Has the same kind as `a`.
|
||||
"""
|
||||
kind = a.dtype.kind
|
||||
if n > m and a.max() < 2 ** m:
|
||||
mnew = int(np.ceil(m / 2) * 2)
|
||||
if mnew > m:
|
||||
dtype = "int{}".format(mnew)
|
||||
else:
|
||||
dtype = "uint{}".format(mnew)
|
||||
n = int(np.ceil(n / 2) * 2)
|
||||
return a.astype(_dtype_bits(kind, m))
|
||||
elif n == m:
|
||||
return a.copy() if copy else a
|
||||
elif n > m:
|
||||
# downscale with precision loss
|
||||
if copy:
|
||||
b = np.empty(a.shape, _dtype_bits(kind, m))
|
||||
np.floor_divide(a, 2**(n - m), out=b, dtype=a.dtype,
|
||||
casting='unsafe')
|
||||
return b
|
||||
else:
|
||||
a //= 2**(n - m)
|
||||
return a
|
||||
elif m % n == 0:
|
||||
# exact upscale to a multiple of `n` bits
|
||||
if copy:
|
||||
b = np.empty(a.shape, _dtype_bits(kind, m))
|
||||
np.multiply(a, (2**m - 1) // (2**n - 1), out=b, dtype=b.dtype)
|
||||
return b
|
||||
else:
|
||||
a = a.astype(_dtype_bits(kind, m, a.dtype.itemsize), copy=False)
|
||||
a *= (2**m - 1) // (2**n - 1)
|
||||
return a
|
||||
else:
|
||||
# upscale to a multiple of `n` bits,
|
||||
# then downscale with precision loss
|
||||
o = (m // n + 1) * n
|
||||
if copy:
|
||||
b = np.empty(a.shape, _dtype_bits(kind, o))
|
||||
np.multiply(a, (2**o - 1) // (2**n - 1), out=b, dtype=b.dtype)
|
||||
b //= 2**(o - m)
|
||||
return b
|
||||
else:
|
||||
a = a.astype(_dtype_bits(kind, o, a.dtype.itemsize), copy=False)
|
||||
a *= (2**o - 1) // (2**n - 1)
|
||||
a //= 2**(o - m)
|
||||
return a
|
||||
|
||||
image = np.asarray(image)
|
||||
dtypeobj_in = image.dtype
|
||||
if dtype is np.floating:
|
||||
dtypeobj_out = np.dtype('float64')
|
||||
else:
|
||||
dtypeobj_out = np.dtype(dtype)
|
||||
dtype_in = dtypeobj_in.type
|
||||
dtype_out = dtypeobj_out.type
|
||||
kind_in = dtypeobj_in.kind
|
||||
kind_out = dtypeobj_out.kind
|
||||
itemsize_in = dtypeobj_in.itemsize
|
||||
itemsize_out = dtypeobj_out.itemsize
|
||||
|
||||
# Below, we do an `issubdtype` check. Its purpose is to find out
|
||||
# whether we can get away without doing any image conversion. This happens
|
||||
# when:
|
||||
#
|
||||
# - the output and input dtypes are the same or
|
||||
# - when the output is specified as a type, and the input dtype
|
||||
# is a subclass of that type (e.g. `np.floating` will allow
|
||||
# `float32` and `float64` arrays through)
|
||||
|
||||
if np.issubdtype(dtype_in, np.obj2sctype(dtype)):
|
||||
if force_copy:
|
||||
image = image.copy()
|
||||
return image
|
||||
|
||||
if kind_in in 'ui':
|
||||
imin_in = np.iinfo(dtype_in).min
|
||||
imax_in = np.iinfo(dtype_in).max
|
||||
if kind_out in 'ui':
|
||||
imin_out = np.iinfo(dtype_out).min
|
||||
imax_out = np.iinfo(dtype_out).max
|
||||
|
||||
# any -> binary
|
||||
if kind_out == 'b':
|
||||
return image > dtype_in(dtype_range[dtype_in][1] / 2)
|
||||
|
||||
# binary -> any
|
||||
if kind_in == 'b':
|
||||
result = image.astype(dtype_out)
|
||||
if kind_out != 'f':
|
||||
result *= dtype_out(dtype_range[dtype_out][1])
|
||||
return result
|
||||
|
||||
|
||||
# float -> any
|
||||
if kind_in == 'f':
|
||||
if kind_out == 'f':
|
||||
# float -> float
|
||||
return image.astype(dtype_out)
|
||||
|
||||
if np.min(image) < -1.0 or np.max(image) > 1.0:
|
||||
raise ValueError("Images of type float must be between -1 and 1.")
|
||||
# floating point -> integer
|
||||
# use float type that can represent output integer type
|
||||
computation_type = _dtype_itemsize(itemsize_out, dtype_in,
|
||||
np.float32, np.float64)
|
||||
|
||||
if not uniform:
|
||||
if kind_out == 'u':
|
||||
image_out = np.multiply(image, imax_out,
|
||||
dtype=computation_type)
|
||||
else:
|
||||
image_out = np.multiply(image, (imax_out - imin_out) / 2,
|
||||
dtype=computation_type)
|
||||
image_out -= 1.0 / 2.
|
||||
np.rint(image_out, out=image_out)
|
||||
np.clip(image_out, imin_out, imax_out, out=image_out)
|
||||
elif kind_out == 'u':
|
||||
image_out = np.multiply(image, imax_out + 1,
|
||||
dtype=computation_type)
|
||||
np.clip(image_out, 0, imax_out, out=image_out)
|
||||
else:
|
||||
image_out = np.multiply(image, (imax_out - imin_out + 1.0) / 2.0,
|
||||
dtype=computation_type)
|
||||
np.floor(image_out, out=image_out)
|
||||
np.clip(image_out, imin_out, imax_out, out=image_out)
|
||||
return image_out.astype(dtype_out)
|
||||
|
||||
# signed/unsigned int -> float
|
||||
if kind_out == 'f':
|
||||
# use float type that can exactly represent input integers
|
||||
computation_type = _dtype_itemsize(itemsize_in, dtype_out,
|
||||
np.float32, np.float64)
|
||||
|
||||
if kind_in == 'u':
|
||||
# using np.divide or np.multiply doesn't copy the data
|
||||
# until the computation time
|
||||
image = np.multiply(image, 1. / imax_in,
|
||||
dtype=computation_type)
|
||||
# DirectX uses this conversion also for signed ints
|
||||
# if imin_in:
|
||||
# np.maximum(image, -1.0, out=image)
|
||||
else:
|
||||
image = np.add(image, 0.5, dtype=computation_type)
|
||||
image *= 2 / (imax_in - imin_in)
|
||||
|
||||
return np.asarray(image, dtype_out)
|
||||
|
||||
# unsigned int -> signed/unsigned int
|
||||
if kind_in == 'u':
|
||||
if kind_out == 'i':
|
||||
# unsigned int -> signed int
|
||||
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out - 1)
|
||||
return image.view(dtype_out)
|
||||
else:
|
||||
# unsigned int -> unsigned int
|
||||
return _scale(image, 8 * itemsize_in, 8 * itemsize_out)
|
||||
|
||||
# signed int -> unsigned int
|
||||
if kind_out == 'u':
|
||||
image = _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out)
|
||||
result = np.empty(image.shape, dtype_out)
|
||||
np.maximum(image, 0, out=result, dtype=image.dtype, casting='unsafe')
|
||||
return result
|
||||
|
||||
# signed int -> signed int
|
||||
if itemsize_in > itemsize_out:
|
||||
return _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out - 1)
|
||||
|
||||
image = image.astype(_dtype_bits('i', itemsize_out * 8))
|
||||
image -= imin_in
|
||||
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out, copy=False)
|
||||
image += imin_out
|
||||
return image.astype(dtype_out)
|
||||
|
||||
|
||||
##################
|
||||
# AUDIO FILES
|
||||
##################
|
||||
|
@ -1,7 +1,6 @@
|
||||
import requests
|
||||
import pkg_resources
|
||||
from distutils.version import StrictVersion
|
||||
from IPython import get_ipython
|
||||
analytics_url = 'https://api.gradio.app/'
|
||||
PKG_VERSION_URL = "https://api.gradio.app/pkg-version"
|
||||
|
||||
@ -40,10 +39,11 @@ def colab_check():
|
||||
"""
|
||||
is_colab = False
|
||||
try: # Check if running interactively using ipython.
|
||||
from IPython import get_ipython
|
||||
from_ipynb = get_ipython()
|
||||
if "google.colab" in str(from_ipynb):
|
||||
is_colab = True
|
||||
except NameError:
|
||||
except (ImportError, NameError):
|
||||
error_analytics("NameError")
|
||||
return is_colab
|
||||
|
||||
@ -54,9 +54,10 @@ def ipython_check():
|
||||
:return is_ipython (bool): True or False
|
||||
"""
|
||||
try: # Check if running interactively using ipython.
|
||||
from IPython import get_ipython
|
||||
get_ipython()
|
||||
is_ipython = True
|
||||
except NameError:
|
||||
except (ImportError, NameError):
|
||||
is_ipython = False
|
||||
return is_ipython
|
||||
|
||||
|
6
setup.py
6
setup.py
@ -5,7 +5,7 @@ except ImportError:
|
||||
|
||||
setup(
|
||||
name='gradio',
|
||||
version='1.7.0',
|
||||
version='1.7.1',
|
||||
include_package_data=True,
|
||||
description='Python library for easily interacting with trained machine learning models',
|
||||
author='Abubakar Abid',
|
||||
@ -22,13 +22,9 @@ setup(
|
||||
'Flask-Login',
|
||||
'paramiko',
|
||||
'scipy',
|
||||
'IPython',
|
||||
'scikit-image',
|
||||
'analytics-python',
|
||||
'pandas',
|
||||
'ffmpy',
|
||||
'librosa',
|
||||
'colorama >= 0.3.9',
|
||||
'markdown2',
|
||||
'pycryptodome'
|
||||
],
|
||||
|
Loading…
Reference in New Issue
Block a user