mirror of
https://github.com/gradio-app/gradio.git
synced 2024-11-27 01:40:20 +08:00
Stop running iterators when js client disconnects (#7835)
* Add code * add changeset * move * add changeset * Add code * Format notebook * Address comments --------- Co-authored-by: gradio-pr-bot <gradio-pr-bot@users.noreply.github.com>
This commit is contained in:
parent
72661e3391
commit
ee804b2d56
5
.changeset/eighty-ends-invent.md
Normal file
5
.changeset/eighty-ends-invent.md
Normal file
@ -0,0 +1,5 @@
|
||||
---
|
||||
"gradio": patch
|
||||
---
|
||||
|
||||
feat:Stop running iterators when js client disconnects
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -44,6 +44,7 @@ demo/all_demos/requirements.txt
|
||||
demo/*/config.json
|
||||
demo/annotatedimage_component/*.png
|
||||
demo/fake_diffusion_with_gif/*.gif
|
||||
demo/cancel_events/cancel_events_output_log.txt
|
||||
|
||||
# Etc
|
||||
.idea/*
|
||||
|
@ -1 +1 @@
|
||||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "\n", "\n", "def fake_diffusion(steps):\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " time.sleep(0.5)\n", " yield str(i)\n", "\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Change\")\n", " cancel_on_submit = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Submit\")\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True)\n", " with gr.Column():\n", " video = gr.Video(sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True)\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
||||
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "import atexit\n", "import pathlib\n", "\n", "log_file = (pathlib.Path(__file__).parent / \"cancel_events_output_log.txt\").resolve()\n", "\n", "def fake_diffusion(steps):\n", " log_file.write_text(\"\")\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " with log_file.open(\"a\") as f:\n", " f.write(f\"Current step: {i}\\n\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Change\")\n", " cancel_on_submit = gr.Textbox(label=\"Cancel Iteration and Expensive Calculation on Submit\")\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True)\n", " with gr.Column():\n", " video = gr.Video(sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True)\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", " atexit.register(lambda: log_file.unlink())\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
@ -1,11 +1,17 @@
|
||||
import time
|
||||
import gradio as gr
|
||||
import atexit
|
||||
import pathlib
|
||||
|
||||
log_file = (pathlib.Path(__file__).parent / "cancel_events_output_log.txt").resolve()
|
||||
|
||||
def fake_diffusion(steps):
|
||||
log_file.write_text("")
|
||||
for i in range(steps):
|
||||
print(f"Current step: {i}")
|
||||
time.sleep(0.5)
|
||||
with log_file.open("a") as f:
|
||||
f.write(f"Current step: {i}\n")
|
||||
time.sleep(0.2)
|
||||
yield str(i)
|
||||
|
||||
|
||||
@ -45,6 +51,7 @@ with gr.Blocks() as demo:
|
||||
video.start_recording(None, None, None, cancels=[click_event, pred_event])
|
||||
|
||||
demo.queue(max_size=20)
|
||||
atexit.register(lambda: log_file.unlink())
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -803,11 +803,11 @@ class App(FastAPI):
|
||||
message=str(e),
|
||||
)
|
||||
response = process_msg(message)
|
||||
if response is not None:
|
||||
yield response
|
||||
if isinstance(e, asyncio.CancelledError):
|
||||
del blocks._queue.pending_messages_per_session[session_hash]
|
||||
await blocks._queue.clean_events(session_hash=session_hash)
|
||||
if response is not None:
|
||||
yield response
|
||||
raise e
|
||||
|
||||
return StreamingResponse(
|
||||
|
@ -1,4 +1,5 @@
|
||||
import { test, expect } from "@gradio/tootils";
|
||||
import { readFileSync } from "fs";
|
||||
|
||||
test("when using an iterative function the UI should update over time as iteration results are received", async ({
|
||||
page
|
||||
@ -44,3 +45,27 @@ test("when using an iterative function it should be possible to cancel the funct
|
||||
await page.waitForTimeout(1000);
|
||||
await expect(textbox).toHaveValue("0");
|
||||
});
|
||||
|
||||
test("when using an iterative function and the user closes the page, the python function should stop running", async ({
|
||||
page
|
||||
}) => {
|
||||
const start_button = await page.locator("button", {
|
||||
hasText: /Start Iterating/
|
||||
});
|
||||
|
||||
await start_button.click();
|
||||
await page.waitForTimeout(300);
|
||||
await page.close();
|
||||
|
||||
// wait for the duration of the entire iteration
|
||||
// check that the final value did not get written
|
||||
// to the log file. That's our proof python stopped
|
||||
// running
|
||||
await new Promise((resolve) => setTimeout(resolve, 2000));
|
||||
const data = readFileSync(
|
||||
"../../demo/cancel_events/cancel_events_output_log.txt",
|
||||
"utf-8"
|
||||
);
|
||||
expect(data).toContain("Current step: 0");
|
||||
expect(data).not.toContain("Current step: 8");
|
||||
});
|
||||
|
Loading…
Reference in New Issue
Block a user