diff --git a/gradio.egg-info/requires.txt b/gradio.egg-info/requires.txt index 7a48934388..704fad562a 100644 --- a/gradio.egg-info/requires.txt +++ b/gradio.egg-info/requires.txt @@ -5,3 +5,4 @@ requests psutil paramiko scipy +IPython diff --git a/gradio/inputs.py b/gradio/inputs.py index 2b516c5142..bdaae47002 100644 --- a/gradio/inputs.py +++ b/gradio/inputs.py @@ -95,7 +95,7 @@ class Sketchpad(AbstractInput): Default preprocessing method for the SketchPad is to convert the sketch to black and white and resize 28x28 """ im_transparent = preprocessing_utils.decode_base64_to_image(inp) - im = Image.new("RGBA", im_transparent.size, "WHITE") # Create a white rgba background + im = Image.new("RGBA", im_transparent.size, "WHITE") # Create a white background for the alpha channel im.paste(im_transparent, (0, 0), im_transparent) im = im.convert('L') if self.invert_colors: diff --git a/gradio/interface.py b/gradio/interface.py index 05de99e31e..b07dfdd570 100644 --- a/gradio/interface.py +++ b/gradio/interface.py @@ -135,8 +135,7 @@ class Interface: Method that calls the relevant method of the model object to make a prediction. :param preprocessed_input: the preprocessed input returned by the input interface """ - - # print(preprocessed_input.shape) +# print(preprocessed_input.shape) if self.model_type == "sklearn": return self.model_obj.predict(preprocessed_input) elif self.model_type == "keras": @@ -252,12 +251,17 @@ class Interface: except NameError: pass - current_pkg_version = pkg_resources.require("gradio")[0].version - latest_pkg_version = requests.get(url=PKG_VERSION_URL).json()["version"] - if StrictVersion(latest_pkg_version) > StrictVersion(current_pkg_version): - print(f"IMPORTANT: You are using gradio version {current_pkg_version}, however version {latest_pkg_version} " - f"is available, please upgrade.") - print('--------') + try: + current_pkg_version = pkg_resources.require("gradio")[0].version + latest_pkg_version = requests.get(url=PKG_VERSION_URL).json()["version"] + if StrictVersion(latest_pkg_version) > StrictVersion(current_pkg_version): + print(f"IMPORTANT: You are using gradio version {current_pkg_version}, " + f"however version {latest_pkg_version} " + f"is available, please upgrade.") + print('--------') + except: # TODO(abidlabs): don't catch all exceptions + pass + if self.verbose: print(strings.en["BETA_MESSAGE"]) if not is_colab: diff --git a/test/test_inputs.py b/test/test_inputs.py index 1c146fdf48..bab6bcd79e 100644 --- a/test/test_inputs.py +++ b/test/test_inputs.py @@ -3,6 +3,7 @@ import os from gradio import inputs BASE64_IMG = "" +BASE64_SKETCH = "" RAND_STRING = "2wBDAAYEBQYFBAYGBQYHBwYIC" PACKAGE_NAME = 'gradio' @@ -15,7 +16,7 @@ class TestSketchpad(unittest.TestCase): def test_preprocessing(self): inp = inputs.Sketchpad() - array = inp.preprocess(BASE64_IMG) + array = inp.preprocess(BASE64_SKETCH) self.assertEqual(array.shape, (1, 28, 28))