mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-12 10:34:32 +08:00
add samples for experiment
This commit is contained in:
parent
1f9747de15
commit
da9e086a97
@ -134,6 +134,7 @@ class Sketchpad(AbstractInput):
|
||||
if self.sample_inputs is not None:
|
||||
for input in self.sample_inputs:
|
||||
encoded_images.append(preprocessing_utils.encode_array_to_base64(input))
|
||||
print(encoded_images)
|
||||
return encoded_images
|
||||
|
||||
|
||||
|
@ -24,7 +24,8 @@ def encode_array_to_base64(image_array):
|
||||
bytes_data = output_bytes.getvalue()
|
||||
|
||||
base64_str = str(base64.b64encode(bytes_data), 'utf-8')
|
||||
return base64_str
|
||||
|
||||
return "data:image/png;base64," + base64_str
|
||||
|
||||
|
||||
def resize_and_crop(img, size, crop_type='top'):
|
||||
|
31
gradio/test.py
Normal file
31
gradio/test.py
Normal file
@ -0,0 +1,31 @@
|
||||
import tensorflow as tf
|
||||
import gradio
|
||||
|
||||
|
||||
#CREATE INTERFACE USING 'GOOD' MNIST MODEL
|
||||
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
||||
model = tf.keras.models.load_model('MNIST_9344.h5')
|
||||
input = gradio.inputs.Sketchpad(sample_inputs=x_train[:10])
|
||||
iface = gradio.Interface(inputs=input, outputs="label", model=model, model_type='keras')
|
||||
iface.launch(inline=False, share=False, inbrowser=True);
|
||||
|
||||
|
||||
#CREATE INTERFACE BY TRAINING MSNIST MODEL
|
||||
|
||||
# (x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
||||
# x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||
#
|
||||
# model = tf.keras.models.Sequential([
|
||||
# tf.keras.layers.Flatten(),
|
||||
# tf.keras.layers.Dense(512, activation=tf.nn.relu),
|
||||
# tf.keras.layers.Dropout(0.2),
|
||||
# tf.keras.layers.Dense(10, activation=tf.nn.softmax)
|
||||
# ])
|
||||
#
|
||||
# model.compile(optimizer='adam',
|
||||
# loss='sparse_categorical_crossentropy',
|
||||
# metrics=['accuracy'])
|
||||
# model.fit(x_train, y_train, epochs=1)
|
||||
# inp = gradio.inputs.Sketchpad(sample_inputs=x_train[:10])
|
||||
# iface = gradio.Interface(inputs=inp, outputs="label", model=model, model_type='keras')
|
||||
# iface.launch(inline=False, share=False, inbrowser=True);
|
Loading…
Reference in New Issue
Block a user