add samples for experiment

This commit is contained in:
dawoodkhan82 2019-07-23 15:42:26 -07:00
parent 1f9747de15
commit da9e086a97
3 changed files with 34 additions and 1 deletions

View File

@ -134,6 +134,7 @@ class Sketchpad(AbstractInput):
if self.sample_inputs is not None:
for input in self.sample_inputs:
encoded_images.append(preprocessing_utils.encode_array_to_base64(input))
print(encoded_images)
return encoded_images

View File

@ -24,7 +24,8 @@ def encode_array_to_base64(image_array):
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), 'utf-8')
return base64_str
return "data:image/png;base64," + base64_str
def resize_and_crop(img, size, crop_type='top'):

31
gradio/test.py Normal file
View File

@ -0,0 +1,31 @@
import tensorflow as tf
import gradio
#CREATE INTERFACE USING 'GOOD' MNIST MODEL
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
model = tf.keras.models.load_model('MNIST_9344.h5')
input = gradio.inputs.Sketchpad(sample_inputs=x_train[:10])
iface = gradio.Interface(inputs=input, outputs="label", model=model, model_type='keras')
iface.launch(inline=False, share=False, inbrowser=True);
#CREATE INTERFACE BY TRAINING MSNIST MODEL
# (x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
# x_train, x_test = x_train / 255.0, x_test / 255.0
#
# model = tf.keras.models.Sequential([
# tf.keras.layers.Flatten(),
# tf.keras.layers.Dense(512, activation=tf.nn.relu),
# tf.keras.layers.Dropout(0.2),
# tf.keras.layers.Dense(10, activation=tf.nn.softmax)
# ])
#
# model.compile(optimizer='adam',
# loss='sparse_categorical_crossentropy',
# metrics=['accuracy'])
# model.fit(x_train, y_train, epochs=1)
# inp = gradio.inputs.Sketchpad(sample_inputs=x_train[:10])
# iface = gradio.Interface(inputs=inp, outputs="label", model=model, model_type='keras')
# iface.launch(inline=False, share=False, inbrowser=True);