updated chatbot guide

This commit is contained in:
Abubakar Abid 2022-02-18 18:54:18 -05:00
parent fa76228db8
commit d647af8fc6

View File

@ -49,9 +49,10 @@ def predict(input, history=[]):
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).replace("<|endoftext|>", "\n")
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
return response, history
```
@ -62,7 +63,7 @@ Let's break this down. The function takes two parameters:
Then, the function tokenizes the input and concatenates it with the tokens corresponding to the previous user and bot responses. Then, this is fed into the pretrained model to get a prediction. Finally, we do some cleaning up so that we can return two values from our function:
* `response`: which is a list of strings corresponding to all of the user and bot responses. This will be rendered as the output in the Gradio demo.
* `response`: which is a list of tuples of strings corresponding to all of the user and bot responses. This will be rendered as the output in the Gradio demo.
* `history` variable, which is the token representation of all of the user and bot responses. In stateful Gradio demos, we *must* return the updated state at the end of the function.
## Step 3 — Creating a Gradio Interface
@ -71,7 +72,7 @@ Now that we have our predictive function set up, we can create a Gradio Interfac
In this case, our function takes in two values, a text input and a state input. The corresponding input components in `gradio` are `"text"` and `"state"`.
The function also returns two values. For now, we will display the list of responses as `"text"` and use the `"state"` output component type for the second return value.
The function also returns two values. We will display the list of responses using the dedicated `"chatbot"` component and use the `"state"` output component type for the second return value.
Note that the `"state"` input and output components are not displayed.
@ -87,56 +88,6 @@ This produces the following interface, which you can try right here in your brow
<iframe src="https://hf.space/gradioiframe/abidlabs/chatbot-minimal/+" frameBorder="0" height="350" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
## Step 4 — Styling Your Interface
The problem is that the output of the chatbot looks pretty ugly. No problem, we can make it prettier by using a little bit of CSS. First, we modify our function to return a string of HTML components, instead of just text:
```python
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response.remove("")
# write some HTML
html = "<div class='chatbot'>"
for m, msg in enumerate(response):
cls = "user" if m%2 == 0 else "bot"
html += "<div class='msg {}'> {}</div>".format(cls, msg)
html += "</div>"
return html, history
```
Now, we change the first output component to be `"html"` instead, since now we are returning a string of HTML code. We also include some custom css to make the output prettier using the `css` parameter.
```python
import gradio as gr
css = """
.chatbox {display:flex;flex-direction:column}
.msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
.msg.user {background-color:cornflowerblue;color:white}
.msg.bot {background-color:lightgray;align-self:self-end}
"""
gr.Interface(fn=predict,
inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"],
outputs=["html", "state"],
css=css).launch()
```
Notice that we have also added a placeholder to the input `text` component by instantiating the `gr.inputs.Textbox()` class and passing in a `placeholder` value, and now we are good to go! Try it out below:
<iframe src="https://hf.space/gradioiframe/abidlabs/chatbot-stylized/+" frameBorder="0" height="350" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
----------