Merge pull request #330 from gradio-app/aliabd/components-tests

Tests for component.py, inputs.py and outputs.py
This commit is contained in:
Abubakar Abid 2021-11-04 07:38:18 -05:00 committed by GitHub
commit d259f3052b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 509 additions and 69 deletions

View File

@ -19,7 +19,7 @@ jobs:
pip install --upgrade pip
pip install -r gradio.egg-info/requires.txt
pip install shap IPython
pip install selenium==4.0.0a6.post2 coverage
pip install selenium==4.0.0a6.post2 coverage scikit-image
- run:
command: |
chromedriver --version

View File

@ -55,7 +55,7 @@ class Component():
if os.path.exists(output_dir):
file_index = len(os.listdir(output_dir))
else:
os.mkdir(output_dir)
os.makedirs(output_dir)
file_index = 0
new_file_name = str(file_index)
if "." in old_file_name:

View File

@ -115,7 +115,7 @@ class Textbox(InputComponent):
self.test_input = {
"str": "the quick brown fox jumped over the lazy dog",
"number": 786.92,
}[type]
}.get(type)
else:
self.test_input = default
self.interpret_by_tokens = True
@ -292,7 +292,7 @@ class Number(InputComponent):
return interpretation
def generate_sample(self):
return 1
return 1.0
class Slider(InputComponent):
@ -933,7 +933,7 @@ class Video(InputComponent):
raise NotImplementedError()
def preprocess_example(self, x):
return processing_utils.encode_file_to_base64(x)
return processing_utils.encode_file_to_base64(x, type="video")
def save_flagged(self, dir, label, data, encryption_key):
"""

File diff suppressed because one or more lines are too long

Binary file not shown.

BIN
test/test_files/bus.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 KiB

Binary file not shown.

Binary file not shown.

View File

@ -3,89 +3,339 @@ import unittest
import gradio as gr
import PIL
import numpy as np
import pandas
from pydub import AudioSegment
import os
import tempfile
import json
import shutil
class InputComponent(unittest.TestCase):
def test_as_component(self):
input = gr.inputs.InputComponent(label="Test Input")
self.assertEqual(input.preprocess("Hello World!"), "Hello World!")
self.assertEqual(input.preprocess_example(["1", "2", "3"]), ["1", "2", "3"])
self.assertEqual(input.serialize(1, True), 1)
self.assertEqual(input.set_interpret_parameters(), input)
self.assertIsNone(input.get_interpretation_neighbors("Hi!"))
self.assertIsNone(input.get_interpretation_scores("Hi!", [], []))
self.assertIsNone(input.generate_sample())
class TestTextbox(unittest.TestCase):
def test_as_component(self):
text_input = gr.inputs.Textbox()
self.assertEqual(text_input.preprocess("Hello World!"), "Hello World!")
self.assertEqual(text_input.preprocess_example("Hello World!"), "Hello World!")
self.assertEqual(text_input.serialize("Hello World!", True), "Hello World!")
to_save = text_input.save_flagged("flagged", "text_input", "Hello World!", None)
self.assertEqual(to_save, "Hello World!")
restored = text_input.restore_flagged(to_save)
self.assertEqual(restored, "Hello World!")
with self.assertWarns(DeprecationWarning):
numeric_text_input = gr.inputs.Textbox(type="number")
self.assertEqual(numeric_text_input.preprocess("2"), 2.0)
with self.assertRaises(ValueError):
wrong_type = gr.inputs.Textbox(type="unknown")
wrong_type.preprocess(0)
self.assertEqual(text_input.tokenize("Hello World! Gradio speaking."), (
['Hello', 'World!', 'Gradio', 'speaking.'],
['World! Gradio speaking.', 'Hello Gradio speaking.', 'Hello World! speaking.', 'Hello World! Gradio'],
None))
text_input.interpretation_replacement = "unknown"
self.assertEqual(text_input.tokenize("Hello World! Gradio speaking."), (
['Hello', 'World!', 'Gradio', 'speaking.'],
['unknown World! Gradio speaking.', 'Hello unknown Gradio speaking.', 'Hello World! unknown speaking.',
'Hello World! Gradio unknown'], None))
self.assertIsInstance(text_input.generate_sample(), str)
def test_in_interface(self):
iface = gr.Interface(lambda x: x[::-1], "textbox", "textbox")
self.assertEqual(iface.process(["Hello"])[0], ["olleH"])
iface = gr.Interface(lambda sentence: max([len(word) for word in sentence.split()]), gr.inputs.Textbox(),
gr.outputs.Textbox(), interpretation="default")
scores, alternative_outputs = iface.interpret(["Return the length of the longest word in this sentence"])
self.assertEqual(scores, [[('Return', 0.0), (' ', 0), ('the', 0.0), (' ', 0), ('length', 0.0), (' ', 0),
('of', 0.0), (' ', 0), ('the', 0.0), (' ', 0), ('longest', 0.0), (' ', 0),
('word', 0.0), (' ', 0), ('in', 0.0), (' ', 0), ('this', 0.0), (' ', 0),
('sentence', 1.0), (' ', 0)]])
self.assertEqual(alternative_outputs, [[['8'], ['8'], ['8'], ['8'], ['8'], ['8'], ['8'], ['8'], ['8'], ['7']]])
class TestNumber(unittest.TestCase):
def test_as_component(self):
numeric_input = gr.inputs.Number()
self.assertEqual(numeric_input.preprocess(3), 3.0)
self.assertEqual(numeric_input.preprocess_example(3), 3)
self.assertEqual(numeric_input.serialize(3, True), 3)
to_save = numeric_input.save_flagged("flagged", "numeric_input", 3, None)
self.assertEqual(to_save, 3)
restored = numeric_input.restore_flagged(to_save)
self.assertEqual(restored, 3)
self.assertIsInstance(numeric_input.generate_sample(), float)
numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="absolute")
self.assertEqual(numeric_input.get_interpretation_neighbors(1), ([-2.0, -1.0, 0.0, 2.0, 3.0, 4.0], {}))
numeric_input.set_interpret_parameters(steps=3, delta=1, delta_type="percent")
self.assertEqual(numeric_input.get_interpretation_neighbors(1), ([0.97, 0.98, 0.99, 1.01, 1.02, 1.03], {}))
def test_in_interface(self):
iface = gr.Interface(lambda x: x[::-1], "textbox", "textbox")
self.assertEqual(iface.process(["Hello"])[0], ["olleH"])
iface = gr.Interface(lambda x: x*x, "number", "number")
self.assertEqual(iface.process([5])[0], [25])
iface = gr.Interface(lambda x: x**2, "number", "textbox")
self.assertEqual(iface.process([2])[0], ['4.0'])
iface = gr.Interface(lambda x: x**2, "number", "textbox", interpretation="default")
scores, alternative_outputs = iface.interpret([2])
self.assertEqual(scores, [[(1.94, -0.23640000000000017), (1.96, -0.15840000000000032),
(1.98, -0.07960000000000012), [2, None], (2.02, 0.08040000000000003),
(2.04, 0.16159999999999997), (2.06, 0.24359999999999982)]])
self.assertEqual(alternative_outputs, [[['3.7636'], ['3.8415999999999997'], ['3.9204'], ['4.0804'], ['4.1616'],
['4.2436']]])
class TestSlider(unittest.TestCase):
def test_as_component(self):
slider_input = gr.inputs.Slider()
self.assertEqual(slider_input.preprocess(3.0), 3.0)
self.assertEqual(slider_input.preprocess_example(3), 3)
self.assertEqual(slider_input.serialize(3, True), 3)
to_save = slider_input.save_flagged("flagged", "slider_input", 3, None)
self.assertEqual(to_save, 3)
restored = slider_input.restore_flagged(to_save)
self.assertEqual(restored, 3)
self.assertIsInstance(slider_input.generate_sample(), int)
slider_input = gr.inputs.Slider(minimum=10, maximum=20, step=1, default=15, label="Slide Your Input")
self.assertEqual(slider_input.get_template_context(), {
'minimum': 10,
'maximum': 20,
'step': 1,
'default': 15,
'name': 'slider',
'label': 'Slide Your Input'
})
def test_in_interface(self):
iface = gr.Interface(lambda x: str(x) + " cats", "slider", "textbox")
self.assertEqual(iface.process([4])[0], ["4 cats"])
iface = gr.Interface(lambda x: x**2, "slider", "textbox")
self.assertEqual(iface.process([2])[0], ['4'])
iface = gr.Interface(lambda x: x**2, "slider", "textbox", interpretation="default")
scores, alternative_outputs = iface.interpret([2])
self.assertEqual(scores, [[-4.0, 200.08163265306123, 812.3265306122449, 1832.7346938775513, 3261.3061224489797,
5098.040816326531, 7342.938775510205, 9996.0]])
self.assertEqual(alternative_outputs, [[['0.0'], ['204.08163265306123'], ['816.3265306122449'],
['1836.7346938775513'], ['3265.3061224489797'], ['5102.040816326531'],
['7346.938775510205'], ['10000.0']]])
class TestCheckbox(unittest.TestCase):
def test_as_component(self):
bool_input = gr.inputs.Checkbox()
self.assertEqual(bool_input.preprocess(True), True)
self.assertEqual(bool_input.preprocess_example(True), True)
self.assertEqual(bool_input.serialize(True, True), True)
to_save = bool_input.save_flagged("flagged", "bool_input", True, None)
self.assertEqual(to_save, True)
restored = bool_input.restore_flagged(to_save)
self.assertEqual(restored, True)
self.assertIsInstance(bool_input.generate_sample(), bool)
bool_input = gr.inputs.Checkbox(default=True, label="Check Your Input")
self.assertEqual(bool_input.get_template_context(), {
'default': True,
'name': 'checkbox',
'label': 'Check Your Input'
})
def test_in_interface(self):
iface = gr.Interface(lambda x: "yes" if x else "no", "checkbox", "textbox")
self.assertEqual(iface.process([False])[0], ["no"])
iface = gr.Interface(lambda x: 1 if x else 0, "checkbox", "textbox")
self.assertEqual(iface.process([True])[0], ['1'])
iface = gr.Interface(lambda x: 1 if x else 0, "checkbox", "textbox", interpretation="default")
scores, alternative_outputs = iface.interpret([False])
self.assertEqual(scores, [(None, 1.0)])
self.assertEqual(alternative_outputs, [[['1']]])
scores, alternative_outputs = iface.interpret([True])
self.assertEqual(scores, [(-1.0, None)])
self.assertEqual(alternative_outputs, [[['0']]])
class TestCheckboxGroup(unittest.TestCase):
def test_as_component(self):
checkboxes_input = gr.inputs.CheckboxGroup(["a", "b", "c"])
self.assertEqual(checkboxes_input.preprocess(["a", "c"]), ["a", "c"])
self.assertEqual(checkboxes_input.preprocess_example(["a", "c"]), ["a", "c"])
self.assertEqual(checkboxes_input.serialize(["a", "c"], True), ["a", "c"])
to_save = checkboxes_input.save_flagged("flagged", "checkboxes_input", ["a", "c"], None)
self.assertEqual(to_save, '["a", "c"]')
restored = checkboxes_input.restore_flagged(to_save)
self.assertEqual(restored, ["a", "c"])
self.assertIsInstance(checkboxes_input.generate_sample(), list)
checkboxes_input = gr.inputs.CheckboxGroup(choices=["a", "b", "c"], default=["a", "c"],
label="Check Your Inputs")
self.assertEqual(checkboxes_input.get_template_context(), {
'choices': ['a', 'b', 'c'],
'default': ['a', 'c'],
'name': 'checkboxgroup',
'label': 'Check Your Inputs'
})
with self.assertRaises(ValueError):
wrong_type = gr.inputs.CheckboxGroup(["a"], type="unknown")
wrong_type.preprocess(0)
def test_in_interface(self):
checkboxes = gr.inputs.CheckboxGroup(["a", "b", "c"])
iface = gr.Interface(lambda x: "|".join(x), checkboxes, "textbox")
checkboxes_input = gr.inputs.CheckboxGroup(["a", "b", "c"])
iface = gr.Interface(lambda x: "|".join(x), checkboxes_input, "textbox")
self.assertEqual(iface.process([["a", "c"]])[0], ["a|c"])
self.assertEqual(iface.process([[]])[0], [""])
checkboxes = gr.inputs.CheckboxGroup(["a", "b", "c"], type="index")
iface = gr.Interface(lambda x: "|".join(map(str, x)), checkboxes, "textbox")
checkboxes_input = gr.inputs.CheckboxGroup(["a", "b", "c"], type="index")
iface = gr.Interface(lambda x: "|".join(map(str, x)), checkboxes_input, "textbox", interpretation="default")
self.assertEqual(iface.process([["a", "c"]])[0], ["0|2"])
scores, alternative_outputs = iface.interpret([["a", "c"]])
self.assertEqual(scores, [[[-1, None], [None, -1], [-1, None]]])
self.assertEqual(alternative_outputs, [[['2'], ['0|2|1'], ['0']]])
class TestRadio(unittest.TestCase):
def test_as_component(self):
radio_input = gr.inputs.Radio(["a", "b", "c"])
self.assertEqual(radio_input.preprocess("c"), "c")
self.assertEqual(radio_input.preprocess_example("a"), "a")
self.assertEqual(radio_input.serialize("a", True), "a")
to_save = radio_input.save_flagged("flagged", "radio_input", "a", None)
self.assertEqual(to_save, 'a')
restored = radio_input.restore_flagged(to_save)
self.assertEqual(restored, "a")
self.assertIsInstance(radio_input.generate_sample(), str)
radio_input = gr.inputs.Radio(choices=["a", "b", "c"], default="a",
label="Pick Your One Input")
self.assertEqual(radio_input.get_template_context(), {
'choices': ['a', 'b', 'c'],
'default': 'a',
'name': 'radio',
'label': 'Pick Your One Input'
})
with self.assertRaises(ValueError):
wrong_type = gr.inputs.Radio(["a","b"], type="unknown")
wrong_type.preprocess(0)
def test_in_interface(self):
radio = gr.inputs.Radio(["a", "b", "c"])
iface = gr.Interface(lambda x: 2 * x, radio, "textbox")
radio_input = gr.inputs.Radio(["a", "b", "c"])
iface = gr.Interface(lambda x: 2 * x, radio_input, "textbox")
self.assertEqual(iface.process(["c"])[0], ["cc"])
radio = gr.inputs.Radio(["a", "b", "c"], type="index")
iface = gr.Interface(lambda x: 2 * x, radio, "number")
radio_input = gr.inputs.Radio(["a", "b", "c"], type="index")
iface = gr.Interface(lambda x: 2 * x, radio_input, "number", interpretation="default")
self.assertEqual(iface.process(["c"])[0], [4])
scores, alternative_outputs = iface.interpret(["b"])
self.assertEqual(scores, [[-2.0, None, 2.0]])
self.assertEqual(alternative_outputs, [[[0], [4]]])
class TestDropdown(unittest.TestCase):
def test_as_component(self):
dropdown_input = gr.inputs.Dropdown(["a", "b", "c"])
self.assertEqual(dropdown_input.preprocess("c"), "c")
self.assertEqual(dropdown_input.preprocess_example("a"), "a")
self.assertEqual(dropdown_input.serialize("a", True), "a")
to_save = dropdown_input.save_flagged("flagged", "dropdown_input", "a", None)
self.assertEqual(to_save, 'a')
restored = dropdown_input.restore_flagged(to_save)
self.assertEqual(restored, "a")
self.assertIsInstance(dropdown_input.generate_sample(), str)
dropdown_input = gr.inputs.Dropdown(choices=["a", "b", "c"], default="a",
label="Drop Your Input")
self.assertEqual(dropdown_input.get_template_context(), {
'choices': ['a', 'b', 'c'],
'default': 'a',
'name': 'dropdown',
'label': 'Drop Your Input'
})
with self.assertRaises(ValueError):
wrong_type = gr.inputs.Dropdown(["a"], type="unknown")
wrong_type.preprocess(0)
def test_in_interface(self):
dropdown = gr.inputs.Dropdown(["a", "b", "c"])
iface = gr.Interface(lambda x: 2 * x, dropdown, "textbox")
dropdown_input = gr.inputs.Dropdown(["a", "b", "c"])
iface = gr.Interface(lambda x: 2 * x, dropdown_input, "textbox")
self.assertEqual(iface.process(["c"])[0], ["cc"])
dropdown = gr.inputs.Dropdown(["a", "b", "c"], type="index")
iface = gr.Interface(lambda x: 2 * x, dropdown, "number")
iface = gr.Interface(lambda x: 2 * x, dropdown, "number", interpretation="default")
self.assertEqual(iface.process(["c"])[0], [4])
scores, alternative_outputs = iface.interpret(["b"])
self.assertEqual(scores, [[-2.0, None, 2.0]])
self.assertEqual(alternative_outputs, [[[0], [4]]])
class TestImage(unittest.TestCase):
def test_as_component(self):
x_img = gr.test_data.BASE64_IMAGE
img = gr.test_data.BASE64_IMAGE
image_input = gr.inputs.Image()
self.assertEqual(image_input.preprocess(x_img).shape, (68, 61 ,3))
self.assertEqual(image_input.preprocess(img).shape, (68, 61, 3))
image_input = gr.inputs.Image(image_mode="L", shape=(25, 25))
self.assertEqual(image_input.preprocess(x_img).shape, (25, 25))
self.assertEqual(image_input.preprocess(img).shape, (25, 25))
image_input = gr.inputs.Image(shape=(30, 10), type="pil")
self.assertEqual(image_input.preprocess(x_img).size, (30, 10))
self.assertEqual(image_input.preprocess(img).size, (30, 10))
self.assertEqual(image_input.preprocess_example("test/test_files/bus.png"), img)
self.assertEqual(image_input.serialize("test/test_files/bus.png", True), img)
to_save = image_input.save_flagged("flagged", "image_input", img, None)
self.assertEqual("image_input/0.png", to_save)
to_save = image_input.save_flagged("flagged", "image_input", img, None)
self.assertEqual("image_input/1.png", to_save)
restored = image_input.restore_flagged(to_save)
self.assertEqual(restored, "image_input/1.png")
shutil.rmtree('flagged')
self.assertIsInstance(image_input.generate_sample(), str)
image_input = gr.inputs.Image(source="upload", tool="editor", type="pil", label="Upload Your Image")
self.assertEqual(image_input.get_template_context(), {
'image_mode': 'RGB',
'shape': None,
'source': 'upload',
'tool': 'editor',
'optional': False,
'name': 'image',
'label': 'Upload Your Image'
})
self.assertIsNone(image_input.preprocess(None))
image_input = gr.inputs.Image(invert_colors=True)
self.assertIsNotNone(image_input.preprocess(img))
image_input.preprocess(img)
with self.assertWarns(DeprecationWarning):
file_image = gr.inputs.Image(type="file")
file_image.preprocess(gr.test_data.BASE64_IMAGE)
file_image = gr.inputs.Image(type="filepath")
self.assertIsInstance(file_image.preprocess(img), str)
with self.assertRaises(ValueError):
wrong_type = gr.inputs.Image(type="unknown")
wrong_type.preprocess(img)
wrong_type.serialize("test/test_files/bus.png", False)
img_pil = PIL.Image.open('test/test_files/bus.png')
image_input = gr.inputs.Image(type="numpy")
self.assertIsInstance(image_input.serialize(img_pil, False), str)
image_input = gr.inputs.Image(type="pil")
self.assertIsInstance(image_input.serialize(img_pil, False), str)
image_input = gr.inputs.Image(type="file")
with open("test/test_files/bus.png") as f:
self.assertEqual(image_input.serialize(f, False), img)
image_input.shape = (30, 10)
self.assertIsNotNone(image_input._segment_by_slic(img))
def test_in_interface(self):
x_img = gr.test_data.BASE64_IMAGE
def open_and_rotate(img_file):
img = PIL.Image.open(img_file)
return img.rotate(90, expand=True)
iface = gr.Interface(
open_and_rotate,
gr.inputs.Image(shape=(30, 10), type="file"),
"image")
output = iface.process([x_img])[0][0]
img = gr.test_data.BASE64_IMAGE
image_input = gr.inputs.Image()
iface = gr.Interface(lambda x: PIL.Image.open(x).rotate(90, expand=True),
gr.inputs.Image(shape=(30, 10), type="file"), "image")
output = iface.process([img])[0][0]
self.assertEqual(gr.processing_utils.decode_base64_to_image(output).size, (10, 30))
iface = gr.Interface(lambda x: np.sum(x), image_input, "textbox", interpretation="default")
scores, alternative_outputs = iface.interpret([img])
self.assertEqual(scores, gr.test_data.SUM_PIXELS_INTERPRETATION["scores"])
self.assertEqual(alternative_outputs, gr.test_data.SUM_PIXELS_INTERPRETATION["alternative_outputs"])
iface = gr.Interface(lambda x: np.sum(x), image_input, "label", interpretation="shap")
scores, alternative_outputs = iface.interpret([img])
self.assertEqual(len(scores[0]), len(gr.test_data.SUM_PIXELS_SHAP_INTERPRETATION["scores"][0]))
self.assertEqual(len(alternative_outputs[0]),
len(gr.test_data.SUM_PIXELS_SHAP_INTERPRETATION["alternative_outputs"][0]))
image_input = gr.inputs.Image(shape=(30, 10))
iface = gr.Interface(lambda x: np.sum(x), image_input, "textbox", interpretation="default")
self.assertIsNotNone(iface.interpret([img]))
class TestAudio(unittest.TestCase):
def test_as_component(self):
@ -94,68 +344,226 @@ class TestAudio(unittest.TestCase):
output = audio_input.preprocess(x_wav)
self.assertEqual(output[0], 8000)
self.assertEqual(output[1].shape, (8046,))
self.assertEqual(audio_input.preprocess_example("test/test_files/audio_sample.wav"), x_wav["data"])
self.assertEqual(audio_input.serialize("test/test_files/audio_sample.wav", True)["data"], x_wav["data"])
to_save = audio_input.save_flagged("flagged", "audio_input", x_wav, None)
self.assertEqual("audio_input/0.wav", to_save)
to_save = audio_input.save_flagged("flagged", "audio_input", x_wav, None)
self.assertEqual("audio_input/1.wav", to_save)
restored = audio_input.restore_flagged(to_save)
self.assertEqual(restored, "audio_input/1.wav")
shutil.rmtree('flagged')
self.assertIsInstance(audio_input.generate_sample(), dict)
audio_input = gr.inputs.Audio(label="Upload Your Audio")
self.assertEqual(audio_input.get_template_context(), {
'source': 'upload',
'optional': False,
'name': 'audio',
'label': 'Upload Your Audio'
})
self.assertIsNone(audio_input.preprocess(None))
x_wav["is_example"] = True
x_wav["crop_min"], x_wav["crop_max"] = 1, 4
self.assertIsNotNone(audio_input.preprocess(x_wav))
with self.assertWarns(DeprecationWarning):
audio_input = gr.inputs.Audio(type="file")
audio_input.preprocess(x_wav)
with open("test/test_files/audio_sample.wav") as f:
audio_input.serialize(f, False)
audio_input = gr.inputs.Audio(type="filepath")
self.assertIsInstance(audio_input.preprocess(x_wav), str)
with self.assertRaises(ValueError):
audio_input = gr.inputs.Audio(type="unknown")
audio_input.preprocess(x_wav)
audio_input.serialize(x_wav, False)
audio_input = gr.inputs.Audio(type="numpy")
x_wav = gr.processing_utils.audio_from_file("test/test_files/audio_sample.wav")
self.assertIsInstance(audio_input.serialize(x_wav, False), dict)
def test_in_interface(self):
x_wav = gr.test_data.BASE64_AUDIO
def max_amplitude_from_wav_file(wav_file):
audio_segment = AudioSegment.from_file(wav_file.name)
data = np.array(audio_segment.get_array_of_samples())
return np.max(data)
iface = gr.Interface(
max_amplitude_from_wav_file,
max_amplitude_from_wav_file,
gr.inputs.Audio(type="file"),
"number")
self.assertEqual(iface.process([x_wav])[0], [5239])
"number", interpretation="default")
self.assertEqual(iface.process([x_wav])[0], [576])
# scores, alternative_outputs = iface.interpret([x_wav])
# self.assertEqual(scores, ... )
# self.assertEqual(alternative_outputs, ...)
class TestFile(unittest.TestCase):
def test_as_component(self):
x_file = gr.test_data.BASE64_FILE
file_input = gr.inputs.File()
output = file_input.preprocess(x_file)
self.assertIsInstance(output, tempfile._TemporaryFileWrapper)
self.assertEqual(file_input.preprocess_example(x_file), x_file)
self.assertEqual(file_input.serialize("test/test_files/sample_file.pdf", True), 'test/test_files/sample_file.pdf')
to_save = file_input.save_flagged("flagged", "file_input", [x_file], None)
self.assertEqual("file_input/0.pdf", to_save)
to_save = file_input.save_flagged("flagged", "file_input", [x_file], None)
self.assertEqual("file_input/1.pdf", to_save)
restored = file_input.restore_flagged(to_save)
self.assertEqual(restored, "file_input/1.pdf")
shutil.rmtree('flagged')
self.assertIsInstance(file_input.generate_sample(), dict)
file_input = gr.inputs.File(label="Upload Your File")
self.assertEqual(file_input.get_template_context(), {
'file_count': 'single',
'optional': False,
'name': 'file',
'label': 'Upload Your File'
})
self.assertIsNone(file_input.preprocess(None))
x_file["is_example"] = True
self.assertIsNotNone(file_input.preprocess(x_file))
def test_in_interface(self):
x_file = gr.test_data.BASE64_AUDIO
x_file = gr.test_data.BASE64_FILE
def get_size_of_file(file_obj):
return os.path.getsize(file_obj.name)
iface = gr.Interface(
get_size_of_file, "file", "number")
self.assertEqual(iface.process([[x_file]])[0], [16362])
self.assertEqual(iface.process([[x_file]])[0], [10558])
class TestDataframe(unittest.TestCase):
def test_as_component(self):
x_data = [["Tim",12,False],["Jan",24,True]]
x_data = [["Tim", 12, False], ["Jan", 24, True]]
dataframe_input = gr.inputs.Dataframe(headers=["Name","Age","Member"])
output = dataframe_input.preprocess(x_data)
self.assertEqual(output["Age"][1], 24)
self.assertEqual(output["Member"][0], False)
self.assertEqual(dataframe_input.preprocess_example(x_data), x_data)
self.assertEqual(dataframe_input.serialize(x_data, True), x_data)
to_save = dataframe_input.save_flagged("flagged", "dataframe_input", x_data, None)
self.assertEqual(json.dumps(x_data), to_save)
restored = dataframe_input.restore_flagged(to_save)
self.assertEqual(x_data, restored)
self.assertIsInstance(dataframe_input.generate_sample(), list)
dataframe_input = gr.inputs.Dataframe(headers=["Name", "Age", "Member"], label="Dataframe Input")
self.assertEqual(dataframe_input.get_template_context(), {
'headers': ['Name', 'Age', 'Member'],
'datatype': 'str',
'row_count': 3,
'col_count': 3,
'col_width': None,
'default': [[None, None, None], [None, None, None], [None, None, None]],
'name': 'dataframe',
'label': 'Dataframe Input'
})
dataframe_input = gr.inputs.Dataframe()
output = dataframe_input.preprocess(x_data)
self.assertEqual(output[1][1], 24)
with self.assertRaises(ValueError):
wrong_type = gr.inputs.Dataframe(type="unknown")
wrong_type.preprocess(x_data)
def test_in_interface(self):
x_data = [[1,2,3],[4,5,6]]
x_data = [[1, 2, 3], [4, 5, 6]]
iface = gr.Interface(np.max, "numpy", "number")
self.assertEqual(iface.process([x_data])[0], [6])
x_data = [["Tim"], ["Jon"], ["Sal"]]
def get_last(l):
return l[-1]
iface = gr.Interface(get_last, "list", "text")
self.assertEqual(iface.process([x_data])[0], ["Sal"])
class TestSequential(unittest.TestCase):
class TestVideo(unittest.TestCase):
def test_as_component(self):
x_data = [["Tim",12,False],["Jan",24,True]]
dataframe_input = gr.inputs.Dataframe(headers=["Name","Age","Member"])
output = dataframe_input.preprocess(x_data)
self.assertEqual(output["Age"][1], 24)
self.assertEqual(output["Member"][0], False)
x_video = gr.test_data.BASE64_VIDEO
video_input = gr.inputs.Video()
output = video_input.preprocess(x_video)
self.assertIsInstance(output, str)
self.assertEqual(video_input.preprocess_example("test/test_files/video_sample.mp4"), x_video["data"])
to_save = video_input.save_flagged("flagged", "video_input", x_video, None)
self.assertEqual("video_input/0.mp4", to_save)
to_save = video_input.save_flagged("flagged", "video_input", x_video, None)
self.assertEqual("video_input/1.mp4", to_save)
restored = video_input.restore_flagged(to_save)
self.assertEqual(restored, "video_input/1.mp4")
shutil.rmtree('flagged')
self.assertIsInstance(video_input.generate_sample(), dict)
video_input = gr.inputs.Video(label="Upload Your Video")
self.assertEqual(video_input.get_template_context(), {
'optional': False,
'name': 'video',
'label': 'Upload Your Video'
})
self.assertIsNone(video_input.preprocess(None))
x_video["is_example"] = True
self.assertIsNotNone(video_input.preprocess(x_video))
video_input = gr.inputs.Video(type="avi")
# self.assertEqual(video_input.preprocess(x_video)[-3:], "avi")
with self.assertRaises(NotImplementedError):
video_input.serialize(x_video, True)
def test_in_interface(self):
x_data = [[1,2,3],[4,5,6]]
iface = gr.Interface(np.max, "numpy", "number")
self.assertEqual(iface.process([x_data])[0], [6])
x_video = gr.test_data.BASE64_VIDEO
iface = gr.Interface(
lambda x:x,
"video",
"playable_video")
self.assertEqual(iface.process([x_video])[0][0]["data"], x_video["data"])
class TestTimeseries(unittest.TestCase):
def test_as_component(self):
timeseries_input = gr.inputs.Timeseries(
x="time",
y=["retail", "food", "other"]
)
x_timeseries = {"data": [[1] + [2] * len(timeseries_input.y)] * 4, "headers": [timeseries_input.x] +
timeseries_input.y}
output = timeseries_input.preprocess(x_timeseries)
self.assertIsInstance(output, pandas.core.frame.DataFrame)
self.assertEqual(timeseries_input.preprocess_example(x_timeseries), x_timeseries)
to_save = timeseries_input.save_flagged("flagged", "video_input", x_timeseries, None)
self.assertEqual(json.dumps(x_timeseries), to_save)
restored = timeseries_input.restore_flagged(to_save)
self.assertEqual(x_timeseries, restored)
self.assertIsInstance(timeseries_input.generate_sample(), dict)
timeseries_input = gr.inputs.Timeseries(
x="time",
y="retail", label="Upload Your Timeseries"
)
self.assertEqual(timeseries_input.get_template_context(), {
'x': 'time',
'y': ['retail'],
'optional': False,
'name': 'timeseries',
'label': 'Upload Your Timeseries'
})
self.assertIsNone(timeseries_input.preprocess(None))
x_timeseries["range"] = (0, 1)
self.assertIsNotNone(timeseries_input.preprocess(x_timeseries))
def test_in_interface(self):
timeseries_input = gr.inputs.Timeseries(
x="time",
y=["retail", "food", "other"]
)
x_timeseries = {"data": [[1] + [2] * len(timeseries_input.y)] * 4, "headers": [timeseries_input.x] +
timeseries_input.y}
iface = gr.Interface(
lambda x: x,
timeseries_input,
"dataframe")
self.assertEqual(iface.process([x_timeseries])[0], [{'headers': ['time', 'retail', 'food', 'other'],
'data': [[1, 2, 2, 2], [1, 2, 2, 2], [1, 2, 2, 2],
[1, 2, 2, 2]]}])
x_data = [["Tim"], ["Jon"], ["Sal"]]
def get_last(l):
return l[-1]
iface = gr.Interface(get_last, "list", "text")
self.assertEqual(iface.process([x_data])[0], ["Sal"])
class TestNames(unittest.TestCase):
def test_no_duplicate_uncased_names(self): # this ensures that get_input_instance() works correctly when instantiating from components
@ -163,5 +571,6 @@ class TestNames(unittest.TestCase):
unique_subclasses_uncased = set([s.__name__.lower() for s in subclasses])
self.assertEqual(len(subclasses), len(unique_subclasses_uncased))
if __name__ == '__main__':
unittest.main()
unittest.main()

View File

@ -188,6 +188,35 @@ class TestDataframe(unittest.TestCase):
iface.process([[2, 3, 4]])[0][0],
{"data": [[True, False, True]]})
class TestCarousel(unittest.TestCase):
def test_as_component(self):
carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease")
output = carousel_output.postprocess([["Hello World", "test/test_files/bus.png"],
["Bye World", "test/test_files/bus.png"]])
self.assertEqual(output, [['Hello World', gr.test_data.BASE64_IMAGE],
['Bye World', gr.test_data.BASE64_IMAGE]])
def test_in_interface(self):
carousel_output = gr.outputs.Carousel(["text", "image"], label="Disease")
def report(img):
results = []
for i, mode in enumerate(["Red", "Green", "Blue"]):
color_filter = np.array([0, 0, 0])
color_filter[i] = 1
results.append([mode, img * color_filter])
return results
iface = gr.Interface(report, gr.inputs.Image(type="numpy"), carousel_output)
self.assertEqual(
iface.process([gr.test_data.BASE64_IMAGE])[0], [[['Red',
''],
['Green',
''],
['Blue',
'']]])
class TestNames(unittest.TestCase):
def test_no_duplicate_uncased_names(self): # this ensures that get_input_instance() works correctly when instantiating from components
subclasses = gr.outputs.OutputComponent.__subclasses__()