mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
updated PyPi version
This commit is contained in:
parent
8af47c4321
commit
b9afa17023
@ -15,17 +15,19 @@ import base64
|
||||
import numpy as np
|
||||
import PIL
|
||||
import scipy.io.wavfile
|
||||
from gradio import processing_utils
|
||||
from gradio import processing_utils, test_data
|
||||
import pandas as pd
|
||||
import math
|
||||
import tempfile
|
||||
|
||||
|
||||
class InputComponent(Component):
|
||||
"""
|
||||
Input Component. All input components subclass this.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class Textbox(InputComponent):
|
||||
"""
|
||||
Component creates a textbox for user to enter input. Provides a string (or number is `type` is "float") as an argument to the wrapped function.
|
||||
@ -33,7 +35,7 @@ class Textbox(InputComponent):
|
||||
"""
|
||||
|
||||
def __init__(self, lines=1, placeholder=None, default=None, numeric=False, type="str", label=None):
|
||||
'''
|
||||
"""
|
||||
Parameters:
|
||||
lines (int): number of line rows to provide in textarea.
|
||||
placeholder (str): placeholder hint to provide behind textarea.
|
||||
@ -41,7 +43,7 @@ class Textbox(InputComponent):
|
||||
numeric (bool): DEPRECATED. Whether the input should be parsed as a number instead of a string.
|
||||
type (str): Type of value to be returned by component. "str" returns a string, "number" returns a float value.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
"""
|
||||
self.lines = lines
|
||||
self.placeholder = placeholder
|
||||
self.default = default
|
||||
@ -50,6 +52,13 @@ class Textbox(InputComponent):
|
||||
self.type = "number"
|
||||
else:
|
||||
self.type = type
|
||||
if default is None:
|
||||
self.test_input = {
|
||||
"str": "the quick brown fox jumped over the lazy dog",
|
||||
"number": 786.92,
|
||||
}[type]
|
||||
else:
|
||||
self.test_input = default
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
@ -77,7 +86,6 @@ class Textbox(InputComponent):
|
||||
raise ValueError("Unknown type: " + self.type + ". Please choose from: 'str', 'number'.")
|
||||
|
||||
|
||||
|
||||
class Slider(InputComponent):
|
||||
"""
|
||||
Component creates a slider that ranges from `minimum` to `maximum`. Provides a number as an argument to the wrapped function.
|
||||
@ -101,6 +109,7 @@ class Slider(InputComponent):
|
||||
step = 10 ** power
|
||||
self.step = step
|
||||
self.default = minimum if default is None else default
|
||||
self.test_input = self.default
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
@ -126,10 +135,11 @@ class Checkbox(InputComponent):
|
||||
"""
|
||||
|
||||
def __init__(self, label=None):
|
||||
'''
|
||||
"""
|
||||
Parameters:
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
"""
|
||||
self.test_input = True
|
||||
super().__init__(label)
|
||||
|
||||
@classmethod
|
||||
@ -154,6 +164,7 @@ class CheckboxGroup(InputComponent):
|
||||
'''
|
||||
self.choices = choices
|
||||
self.type = type
|
||||
self.test_input = self.choices
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
@ -186,6 +197,7 @@ class Radio(InputComponent):
|
||||
'''
|
||||
self.choices = choices
|
||||
self.type = type
|
||||
self.test_input = self.choices[0]
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
@ -202,6 +214,7 @@ class Radio(InputComponent):
|
||||
else:
|
||||
raise ValueError("Unknown type: " + self.type + ". Please choose from: 'value', 'index'.")
|
||||
|
||||
|
||||
class Dropdown(InputComponent):
|
||||
"""
|
||||
Component creates a dropdown of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function.
|
||||
@ -217,6 +230,7 @@ class Dropdown(InputComponent):
|
||||
'''
|
||||
self.choices = choices
|
||||
self.type = type
|
||||
self.test_input = self.choices[0]
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
@ -248,7 +262,7 @@ class Image(InputComponent):
|
||||
invert_colors (bool): whether to invert the image as a preprocessing step.
|
||||
source (str): Source of image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "canvas" defaults to a white image that can be edited and drawn upon with tools.
|
||||
tool (str): Tools used for editing. "editor" allows a full screen editor, "select" provides a cropping and zoom tool.
|
||||
type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3), "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name.
|
||||
type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3) and values from 0 to 255, "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.shape = shape
|
||||
@ -257,6 +271,7 @@ class Image(InputComponent):
|
||||
self.tool = tool
|
||||
self.type = type
|
||||
self.invert_colors = invert_colors
|
||||
self.test_input = test_data.BASE64_IMAGE
|
||||
super().__init__(label)
|
||||
|
||||
@classmethod
|
||||
@ -293,6 +308,8 @@ class Image(InputComponent):
|
||||
file_obj = tempfile.NamedTemporaryFile()
|
||||
im.save(file_obj.name)
|
||||
return file_obj
|
||||
else:
|
||||
raise ValueError("Unknown type: " + self.type + ". Please choose from: 'numpy', 'pil', 'file'.")
|
||||
|
||||
def process_example(self, example):
|
||||
if os.path.exists(example):
|
||||
@ -318,14 +335,15 @@ class Audio(InputComponent):
|
||||
"""
|
||||
|
||||
def __init__(self, source="upload", type="numpy", label=None):
|
||||
'''
|
||||
"""
|
||||
Parameters:
|
||||
source (str): Source of audio. "upload" creates a box where user can drop an audio file, "microphone" creates a microphone input.
|
||||
type (str): Type of value to be returned by component. "numpy" returns a 2-set tuple with an integer sample_rate and the data numpy.array of shape (samples, 2), "file" returns a temporary file object whose path can be retrieved by file_obj.name, "mfcc" returns the mfcc coefficients of the input audio.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
"""
|
||||
self.source = source
|
||||
self.type = type
|
||||
self.test_input = test_data.BASE64_AUDIO
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
@ -367,6 +385,7 @@ class File(InputComponent):
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.type = type
|
||||
self.test_input = None
|
||||
super().__init__(label)
|
||||
|
||||
@classmethod
|
||||
@ -391,7 +410,7 @@ class Dataframe(InputComponent):
|
||||
"""
|
||||
|
||||
def __init__(self, headers=None, row_count=3, col_count=3, datatype="str", type="pandas", label=None):
|
||||
'''
|
||||
"""
|
||||
Parameters:
|
||||
headers (List[str]): Header names to dataframe.
|
||||
row_count (int): Limit number of rows for input.
|
||||
@ -399,14 +418,17 @@ class Dataframe(InputComponent):
|
||||
datatype (Union[str, List[str]]): Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", and "date".
|
||||
type (str): Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
"""
|
||||
self.headers = headers
|
||||
self.datatype = datatype
|
||||
self.row_count = row_count
|
||||
self.col_count = len(headers) if headers else col_count
|
||||
self.type = type
|
||||
super().__init__(label)
|
||||
sample_values = {"str": "abc", "number": 786, "bool": True, "date": "02/08/1993"}
|
||||
column_dtypes = [datatype]*self.col_count if isinstance(datatype, str) else datatype
|
||||
self.test_input = [[sample_values[c] for c in column_dtypes] for _ in range(row_count)]
|
||||
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
|
@ -193,19 +193,19 @@ class Interface:
|
||||
|
||||
return config
|
||||
|
||||
def process(self, raw_input):
|
||||
def process(self, raw_input, predict_fn=None):
|
||||
"""
|
||||
:param raw_input: a list of raw inputs to process and apply the
|
||||
prediction(s) on.
|
||||
:param predict_fn: which function to process. If not provided, all of the model functions are used.
|
||||
:return:
|
||||
processed output: a list of processed outputs to return as the
|
||||
prediction(s).
|
||||
duration: a list of time deltas measuring inference time for each
|
||||
prediction fn.
|
||||
"""
|
||||
processed_input = [input_interface.preprocess(
|
||||
raw_input[i]) for i, input_interface in
|
||||
enumerate(self.input_interfaces)]
|
||||
processed_input = [input_interface.preprocess(raw_input[i])
|
||||
for i, input_interface in enumerate(self.input_interfaces)]
|
||||
predictions = []
|
||||
durations = []
|
||||
for predict_fn in self.predict:
|
||||
@ -253,6 +253,22 @@ class Interface:
|
||||
thread.keep_running = False
|
||||
networking.url_ok(path_to_local_server)
|
||||
|
||||
def test_launch(self):
|
||||
for predict_fn in self.predict:
|
||||
print("Test launching: {}()...".format(predict_fn.__name__), end=' ')
|
||||
|
||||
raw_input = []
|
||||
for input_interface in self.input_interfaces:
|
||||
if input_interface.test_input is None: # If no test input is defined for that input interface
|
||||
print("SKIPPED")
|
||||
break
|
||||
else: # If a test input is defined for each interface object
|
||||
raw_input.append(input_interface.test_input)
|
||||
else:
|
||||
self.process(raw_input)
|
||||
print("PASSED")
|
||||
continue
|
||||
|
||||
def launch(self, inline=None, inbrowser=None, share=False, debug=False):
|
||||
"""
|
||||
Parameters
|
||||
|
@ -7,17 +7,13 @@ body#lib {
|
||||
button, input[type="submit"], input[type="reset"], input[type="text"], input[type="button"], select[type="submit"] {
|
||||
border: none;
|
||||
font: inherit;
|
||||
cursor: pointer;
|
||||
outline: inherit;
|
||||
-webkit-appearance: none;
|
||||
}
|
||||
select {
|
||||
font: inherit;
|
||||
}
|
||||
label, input[type=radio], input[type=checkbox], select, input[type=range] {
|
||||
cursor: pointer;
|
||||
}
|
||||
button, input[type="submit"], input[type="reset"], input[type="button"], select[type="submit"] {
|
||||
label, input[type=radio], input[type=checkbox], select, input[type=range], button, input[type="submit"], input[type="reset"], input[type="button"], select[type="submit"] {
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
|
2
build/lib/gradio/test_data.py
Normal file
2
build/lib/gradio/test_data.py
Normal file
File diff suppressed because one or more lines are too long
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 1.0
|
||||
Name: gradio
|
||||
Version: 1.1.7
|
||||
Version: 1.1.8.1
|
||||
Summary: Python library for easily interacting with trained machine learning models
|
||||
Home-page: https://github.com/gradio-app/gradio-UI
|
||||
Author: Abubakar Abid
|
||||
|
@ -9,6 +9,7 @@ gradio/networking.py
|
||||
gradio/outputs.py
|
||||
gradio/processing_utils.py
|
||||
gradio/strings.py
|
||||
gradio/test_data.py
|
||||
gradio/tunneling.py
|
||||
gradio/utils.py
|
||||
gradio.egg-info/PKG-INFO
|
||||
|
Loading…
Reference in New Issue
Block a user