mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
changes
This commit is contained in:
parent
3b73a5522a
commit
b5b5c03ec6
@ -14,6 +14,8 @@ from gradio import networking, strings, utils, processing_utils
|
||||
from distutils.version import StrictVersion
|
||||
from skimage.segmentation import slic
|
||||
from skimage.util import img_as_float
|
||||
from gradio import processing_utils
|
||||
import PIL
|
||||
import pkg_resources
|
||||
import requests
|
||||
import random
|
||||
@ -216,7 +218,7 @@ class Interface:
|
||||
durations = []
|
||||
for predict_fn in self.predict:
|
||||
start = time.time()
|
||||
if self.capture_session and not (self.session is None):
|
||||
if self.capture_session and self.session is not None:
|
||||
graph, sess = self.session
|
||||
with graph.as_default():
|
||||
with sess.as_default():
|
||||
@ -430,13 +432,14 @@ class Interface:
|
||||
return tokens, leave_one_out_tokens
|
||||
|
||||
def tokenize_image(self, image):
|
||||
image = self.input_interfaces[0].preprocess(image)
|
||||
image = np.array(processing_utils.decode_base64_to_image(image))
|
||||
segments_slic = slic(image, n_segments=20, compactness=10, sigma=1)
|
||||
leave_one_out_tokens = []
|
||||
for (i, segVal) in enumerate(np.unique(segments_slic)):
|
||||
mask = np.copy(image)
|
||||
mask[segments_slic == segVal] = 255
|
||||
leave_one_out_tokens.append(mask)
|
||||
mask = segments_slic == segVal
|
||||
white_screen = np.copy(image)
|
||||
white_screen[segments_slic == segVal] = 255
|
||||
leave_one_out_tokens.append((mask, white_screen))
|
||||
return leave_one_out_tokens
|
||||
|
||||
def score_text(self, tokens, leave_one_out_tokens, text):
|
||||
@ -445,14 +448,18 @@ class Interface:
|
||||
tokens = text.split()
|
||||
|
||||
input_text = " ".join(tokens)
|
||||
output = self.predict[0](input_text)
|
||||
original_label = max(output, key=output.get)
|
||||
original_output = self.process([input_text])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in original_output[0][0]['confidences']}
|
||||
original_label = original_output[0][0]["label"]
|
||||
original_confidence = output[original_label]
|
||||
|
||||
scores = []
|
||||
for idx, input_text in enumerate(leave_one_out_tokens):
|
||||
input_text = " ".join(input_text)
|
||||
output = self.predict[0](input_text)
|
||||
raw_output = self.process([input_text])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in raw_output[0][0]['confidences']}
|
||||
scores.append(original_confidence - output[original_label])
|
||||
|
||||
scores_by_char = []
|
||||
@ -464,44 +471,45 @@ class Interface:
|
||||
return scores_by_char
|
||||
|
||||
def score_image(self, leave_one_out_tokens, image):
|
||||
original_output = self.process(image)
|
||||
original_label = original_output[0][0]['confidences'][0][
|
||||
'label']
|
||||
original_confidence = original_output[0][0]['confidences'][0][
|
||||
'confidence']
|
||||
output_scores = np.full(np.shape(self.input_interfaces[0].preprocess(
|
||||
image[0])), 255)
|
||||
for input_image in leave_one_out_tokens:
|
||||
original_output = self.process([image])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in original_output[0][0]['confidences']}
|
||||
original_label = original_output[0][0]["label"]
|
||||
original_confidence = output[original_label]
|
||||
|
||||
image_interface = self.input_interfaces[0]
|
||||
shape = processing_utils.decode_base64_to_image(image).size
|
||||
output_scores = np.full((shape[1], shape[0]), 0.0)
|
||||
|
||||
for mask, input_image in leave_one_out_tokens:
|
||||
input_image_base64 = processing_utils.encode_array_to_base64(
|
||||
input_image)
|
||||
input_image_arr = []
|
||||
input_image_arr.append(input_image_base64)
|
||||
output = self.process(input_image_arr)
|
||||
np.set_printoptions(threshold=sys.maxsize)
|
||||
if output[0][0]['confidences'][0]['label'] == original_label:
|
||||
input_image[input_image == 255] = (original_confidence -
|
||||
output[0][0][
|
||||
'confidences'][0][
|
||||
'confidence']) * 100
|
||||
mask = (output_scores == 255)
|
||||
output_scores[mask] = input_image[mask]
|
||||
return output_scores
|
||||
raw_output = self.process([input_image_base64])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in raw_output[0][0]['confidences']}
|
||||
score = original_confidence - output[original_label]
|
||||
output_scores += score * mask
|
||||
max_val = np.max(np.abs(output_scores))
|
||||
if max_val > 0:
|
||||
output_scores = output_scores / max_val
|
||||
return output_scores.tolist()
|
||||
|
||||
def simple_explanation(self, input):
|
||||
def simple_explanation(self, x):
|
||||
if isinstance(self.input_interfaces[0], Textbox):
|
||||
tokens, leave_one_out_tokens = self.tokenize_text(input[0])
|
||||
return [self.score_text(tokens, leave_one_out_tokens, input[0])]
|
||||
tokens, leave_one_out_tokens = self.tokenize_text(x[0])
|
||||
return [self.score_text(tokens, leave_one_out_tokens, x[0])]
|
||||
elif isinstance(self.input_interfaces[0], Image):
|
||||
leave_one_out_tokens = self.tokenize_image(input[0])
|
||||
return self.score_image(leave_one_out_tokens, input[0])
|
||||
leave_one_out_tokens = self.tokenize_image(x[0])
|
||||
return [self.score_image(leave_one_out_tokens, x[0])]
|
||||
else:
|
||||
print("Not valid input type")
|
||||
|
||||
def explain(self, input):
|
||||
def explain(self, x):
|
||||
if self.explain_by == "default":
|
||||
return self.simple_explanation(input)
|
||||
return self.simple_explanation(x)
|
||||
else:
|
||||
return self.explain_by(input)
|
||||
preprocessed_x = [input_interface(x_i) for x_i, input_interface in zip(x, self.input_interfaces)]
|
||||
return self.explain_by(*preprocessed_x)
|
||||
|
||||
def reset_all():
|
||||
for io in Interface.get_instances():
|
||||
|
@ -25,14 +25,10 @@
|
||||
flex-direction: column;
|
||||
border: none;
|
||||
opacity: 1;
|
||||
transition: opacity 0.2s ease;
|
||||
}
|
||||
.saliency > div {
|
||||
display: flex;
|
||||
flex-grow: 1;
|
||||
}
|
||||
.saliency > div > div {
|
||||
flex-grow: 1;
|
||||
background-color: #e67e22;
|
||||
.saliency:hover {
|
||||
opacity: 0.4;
|
||||
}
|
||||
.image_preview {
|
||||
width: 100%;
|
||||
|
@ -94,6 +94,7 @@ var io_master_template = {
|
||||
data: JSON.stringify(post_data),
|
||||
success: function(data) {
|
||||
for (let [idx, interpretation] of data.entries()) {
|
||||
console.log(idx)
|
||||
io.input_interfaces[idx].show_interpretation(interpretation);
|
||||
}
|
||||
io.target.find(".loading_in_progress").hide();
|
||||
|
@ -29,6 +29,9 @@ const image_input = {
|
||||
<div class="image_preview_holder">
|
||||
<img class="image_preview" />
|
||||
</div>
|
||||
<div class="saliency_holder hide">
|
||||
<canvas class="saliency"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<input class="hidden_upload" type="file" accept="image/x-png,image/gif,image/jpeg" />
|
||||
@ -180,6 +183,19 @@ const image_input = {
|
||||
this.cropper.destroy();
|
||||
}
|
||||
}
|
||||
this.target.find(".saliency_holder").addClass("hide");
|
||||
},
|
||||
show_interpretation: function(data) {
|
||||
if (this.target.find(".image_preview").attr("src")) {
|
||||
var img = this.target.find(".image_preview")[0];
|
||||
var size = getObjectFitSize(true, img.width, img.height, img.naturalWidth, img.naturalHeight)
|
||||
var width = size.width;
|
||||
var height = size.height;
|
||||
this.target.find(".saliency_holder").removeClass("hide").html(`
|
||||
<canvas class="saliency" width=${width} height=${height}></canvas>`);
|
||||
var ctx = this.target.find(".saliency")[0].getContext('2d');
|
||||
paintSaliency(data, ctx, width, height);
|
||||
}
|
||||
},
|
||||
state: "NO_IMAGE",
|
||||
image_data: null,
|
||||
|
@ -54,22 +54,19 @@ function toStringIfObject(input) {
|
||||
return input;
|
||||
}
|
||||
|
||||
function paintSaliency(data, width, height, ctx) {
|
||||
function paintSaliency(data, ctx, width, height) {
|
||||
var cell_width = width / data[0].length
|
||||
var cell_height = height / data.length
|
||||
var r = 0
|
||||
data.forEach(function(row) {
|
||||
var c = 0
|
||||
row.forEach(function(cell) {
|
||||
if (cell < 0.25) {
|
||||
ctx.fillStyle = "white";
|
||||
} else if (cell < 0.5) {
|
||||
ctx.fillStyle = "#add8ed";
|
||||
} else if (cell < 0.75) {
|
||||
ctx.fillStyle = "#5aa7d3";
|
||||
if (cell < 0) {
|
||||
var color = [7,47,95];
|
||||
} else {
|
||||
ctx.fillStyle = "#072F5F";
|
||||
var color = [112,62,8];
|
||||
}
|
||||
ctx.fillStyle = colorToString(interpolate(cell, [255,255,255], color));
|
||||
ctx.fillRect(c * cell_width, r * cell_height, cell_width, cell_height);
|
||||
c++;
|
||||
})
|
||||
@ -77,6 +74,29 @@ function paintSaliency(data, width, height, ctx) {
|
||||
})
|
||||
}
|
||||
|
||||
function getObjectFitSize(contains /* true = contain, false = cover */, containerWidth, containerHeight, width, height){
|
||||
var doRatio = width / height;
|
||||
var cRatio = containerWidth / containerHeight;
|
||||
var targetWidth = 0;
|
||||
var targetHeight = 0;
|
||||
var test = contains ? (doRatio > cRatio) : (doRatio < cRatio);
|
||||
|
||||
if (test) {
|
||||
targetWidth = containerWidth;
|
||||
targetHeight = targetWidth / doRatio;
|
||||
} else {
|
||||
targetHeight = containerHeight;
|
||||
targetWidth = targetHeight * doRatio;
|
||||
}
|
||||
|
||||
return {
|
||||
width: targetWidth,
|
||||
height: targetHeight,
|
||||
x: (containerWidth - targetWidth) / 2,
|
||||
y: (containerHeight - targetHeight) / 2
|
||||
};
|
||||
}
|
||||
|
||||
// val should be in the range [0.0, 1.0]
|
||||
// rgb1 and rgb2 should be an array of 3 values each in the range [0, 255]
|
||||
function interpolate(val, rgb1, rgb2) {
|
||||
@ -88,7 +108,6 @@ function interpolate(val, rgb1, rgb2) {
|
||||
return rgb;
|
||||
}
|
||||
|
||||
// quick helper function to convert the array into something we can use for css
|
||||
function colorToString(rgb) {
|
||||
return "rgb(" + rgb[0] + ", " + rgb[1] + ", " + rgb[2] + ")";
|
||||
}
|
||||
|
47
demo/image_classifier.py
Normal file
47
demo/image_classifier.py
Normal file
@ -0,0 +1,47 @@
|
||||
import gradio as gr
|
||||
import tensorflow as tf
|
||||
# from vis.utils import utils
|
||||
# from vis.visualization import visualize_cam
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import requests
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
# Download human-readable labels for ImageNet.
|
||||
response = requests.get("https://git.io/JJkYN")
|
||||
labels = response.text.split("\n")
|
||||
|
||||
mobile_net = tf.keras.applications.MobileNetV2()
|
||||
|
||||
|
||||
def image_classifier(im):
|
||||
arr = np.expand_dims(im, axis=0)
|
||||
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
|
||||
prediction = mobile_net.predict(arr).flatten()
|
||||
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
||||
|
||||
def image_explain(im):
|
||||
model.layers[-1].activation = keras.activations.linear
|
||||
model = utils.apply_modifications(model)
|
||||
penultimate_layer_idx = 2
|
||||
class_idx = class_idxs_sorted[0]
|
||||
seed_input = img
|
||||
grad_top1 = visualize_cam(model, layer_idx, class_idx, seed_input,
|
||||
penultimate_layer_idx = penultimate_layer_idx,#None,
|
||||
backprop_modifier = None,
|
||||
grad_modifier = None)
|
||||
print(grad_top_1)
|
||||
return grad_top1
|
||||
|
||||
|
||||
imagein = gr.inputs.Image(shape=(224, 224))
|
||||
label = gr.outputs.Label(num_top_classes=3)
|
||||
|
||||
gr.Interface(image_classifier, imagein, label,
|
||||
capture_session=True,
|
||||
explain_by="default",
|
||||
examples=[
|
||||
["images/cheetah1.jpg"],
|
||||
["images/lion.jpg"]
|
||||
]).launch();
|
@ -5,7 +5,9 @@ nltk.download('vader_lexicon')
|
||||
sid = SentimentIntensityAnalyzer()
|
||||
|
||||
def sentiment_analysis(text):
|
||||
return sid.polarity_scores(text)
|
||||
scores = sid.polarity_scores(text)
|
||||
del scores["compound"]
|
||||
return scores
|
||||
|
||||
io = gr.Interface(sentiment_analysis, "textbox", "label", explain_by="default")
|
||||
|
||||
|
@ -14,6 +14,8 @@ from gradio import networking, strings, utils, processing_utils
|
||||
from distutils.version import StrictVersion
|
||||
from skimage.segmentation import slic
|
||||
from skimage.util import img_as_float
|
||||
from gradio import processing_utils
|
||||
import PIL
|
||||
import pkg_resources
|
||||
import requests
|
||||
import random
|
||||
@ -216,7 +218,7 @@ class Interface:
|
||||
durations = []
|
||||
for predict_fn in self.predict:
|
||||
start = time.time()
|
||||
if self.capture_session and not (self.session is None):
|
||||
if self.capture_session and self.session is not None:
|
||||
graph, sess = self.session
|
||||
with graph.as_default():
|
||||
with sess.as_default():
|
||||
@ -430,13 +432,14 @@ class Interface:
|
||||
return tokens, leave_one_out_tokens
|
||||
|
||||
def tokenize_image(self, image):
|
||||
image = self.input_interfaces[0].preprocess(image)
|
||||
image = np.array(processing_utils.decode_base64_to_image(image))
|
||||
segments_slic = slic(image, n_segments=20, compactness=10, sigma=1)
|
||||
leave_one_out_tokens = []
|
||||
for (i, segVal) in enumerate(np.unique(segments_slic)):
|
||||
mask = np.copy(image)
|
||||
mask[segments_slic == segVal] = 255
|
||||
leave_one_out_tokens.append(mask)
|
||||
mask = segments_slic == segVal
|
||||
white_screen = np.copy(image)
|
||||
white_screen[segments_slic == segVal] = 255
|
||||
leave_one_out_tokens.append((mask, white_screen))
|
||||
return leave_one_out_tokens
|
||||
|
||||
def score_text(self, tokens, leave_one_out_tokens, text):
|
||||
@ -445,14 +448,18 @@ class Interface:
|
||||
tokens = text.split()
|
||||
|
||||
input_text = " ".join(tokens)
|
||||
output = self.predict[0](input_text)
|
||||
original_label = max(output, key=output.get)
|
||||
original_output = self.process([input_text])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in original_output[0][0]['confidences']}
|
||||
original_label = original_output[0][0]["label"]
|
||||
original_confidence = output[original_label]
|
||||
|
||||
scores = []
|
||||
for idx, input_text in enumerate(leave_one_out_tokens):
|
||||
input_text = " ".join(input_text)
|
||||
output = self.predict[0](input_text)
|
||||
raw_output = self.process([input_text])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in raw_output[0][0]['confidences']}
|
||||
scores.append(original_confidence - output[original_label])
|
||||
|
||||
scores_by_char = []
|
||||
@ -464,44 +471,45 @@ class Interface:
|
||||
return scores_by_char
|
||||
|
||||
def score_image(self, leave_one_out_tokens, image):
|
||||
original_output = self.process(image)
|
||||
original_label = original_output[0][0]['confidences'][0][
|
||||
'label']
|
||||
original_confidence = original_output[0][0]['confidences'][0][
|
||||
'confidence']
|
||||
output_scores = np.full(np.shape(self.input_interfaces[0].preprocess(
|
||||
image[0])), 255)
|
||||
for input_image in leave_one_out_tokens:
|
||||
original_output = self.process([image])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in original_output[0][0]['confidences']}
|
||||
original_label = original_output[0][0]["label"]
|
||||
original_confidence = output[original_label]
|
||||
|
||||
image_interface = self.input_interfaces[0]
|
||||
shape = processing_utils.decode_base64_to_image(image).size
|
||||
output_scores = np.full((shape[1], shape[0]), 0.0)
|
||||
|
||||
for mask, input_image in leave_one_out_tokens:
|
||||
input_image_base64 = processing_utils.encode_array_to_base64(
|
||||
input_image)
|
||||
input_image_arr = []
|
||||
input_image_arr.append(input_image_base64)
|
||||
output = self.process(input_image_arr)
|
||||
np.set_printoptions(threshold=sys.maxsize)
|
||||
if output[0][0]['confidences'][0]['label'] == original_label:
|
||||
input_image[input_image == 255] = (original_confidence -
|
||||
output[0][0][
|
||||
'confidences'][0][
|
||||
'confidence']) * 100
|
||||
mask = (output_scores == 255)
|
||||
output_scores[mask] = input_image[mask]
|
||||
return output_scores
|
||||
raw_output = self.process([input_image_base64])
|
||||
output = {result["label"] : result["confidence"]
|
||||
for result in raw_output[0][0]['confidences']}
|
||||
score = original_confidence - output[original_label]
|
||||
output_scores += score * mask
|
||||
max_val = np.max(np.abs(output_scores))
|
||||
if max_val > 0:
|
||||
output_scores = output_scores / max_val
|
||||
return output_scores.tolist()
|
||||
|
||||
def simple_explanation(self, input):
|
||||
def simple_explanation(self, x):
|
||||
if isinstance(self.input_interfaces[0], Textbox):
|
||||
tokens, leave_one_out_tokens = self.tokenize_text(input[0])
|
||||
return [self.score_text(tokens, leave_one_out_tokens, input[0])]
|
||||
tokens, leave_one_out_tokens = self.tokenize_text(x[0])
|
||||
return [self.score_text(tokens, leave_one_out_tokens, x[0])]
|
||||
elif isinstance(self.input_interfaces[0], Image):
|
||||
leave_one_out_tokens = self.tokenize_image(input[0])
|
||||
return self.score_image(leave_one_out_tokens, input[0])
|
||||
leave_one_out_tokens = self.tokenize_image(x[0])
|
||||
return [self.score_image(leave_one_out_tokens, x[0])]
|
||||
else:
|
||||
print("Not valid input type")
|
||||
|
||||
def explain(self, input):
|
||||
def explain(self, x):
|
||||
if self.explain_by == "default":
|
||||
return self.simple_explanation(input)
|
||||
return self.simple_explanation(x)
|
||||
else:
|
||||
return self.explain_by(input)
|
||||
preprocessed_x = [input_interface(x_i) for x_i, input_interface in zip(x, self.input_interfaces)]
|
||||
return self.explain_by(*preprocessed_x)
|
||||
|
||||
def reset_all():
|
||||
for io in Interface.get_instances():
|
||||
|
@ -25,14 +25,10 @@
|
||||
flex-direction: column;
|
||||
border: none;
|
||||
opacity: 1;
|
||||
transition: opacity 0.2s ease;
|
||||
}
|
||||
.saliency > div {
|
||||
display: flex;
|
||||
flex-grow: 1;
|
||||
}
|
||||
.saliency > div > div {
|
||||
flex-grow: 1;
|
||||
background-color: #e67e22;
|
||||
.saliency:hover {
|
||||
opacity: 0.4;
|
||||
}
|
||||
.image_preview {
|
||||
width: 100%;
|
||||
|
@ -94,6 +94,7 @@ var io_master_template = {
|
||||
data: JSON.stringify(post_data),
|
||||
success: function(data) {
|
||||
for (let [idx, interpretation] of data.entries()) {
|
||||
console.log(idx)
|
||||
io.input_interfaces[idx].show_interpretation(interpretation);
|
||||
}
|
||||
io.target.find(".loading_in_progress").hide();
|
||||
|
@ -29,6 +29,9 @@ const image_input = {
|
||||
<div class="image_preview_holder">
|
||||
<img class="image_preview" />
|
||||
</div>
|
||||
<div class="saliency_holder hide">
|
||||
<canvas class="saliency"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<input class="hidden_upload" type="file" accept="image/x-png,image/gif,image/jpeg" />
|
||||
@ -180,6 +183,19 @@ const image_input = {
|
||||
this.cropper.destroy();
|
||||
}
|
||||
}
|
||||
this.target.find(".saliency_holder").addClass("hide");
|
||||
},
|
||||
show_interpretation: function(data) {
|
||||
if (this.target.find(".image_preview").attr("src")) {
|
||||
var img = this.target.find(".image_preview")[0];
|
||||
var size = getObjectFitSize(true, img.width, img.height, img.naturalWidth, img.naturalHeight)
|
||||
var width = size.width;
|
||||
var height = size.height;
|
||||
this.target.find(".saliency_holder").removeClass("hide").html(`
|
||||
<canvas class="saliency" width=${width} height=${height}></canvas>`);
|
||||
var ctx = this.target.find(".saliency")[0].getContext('2d');
|
||||
paintSaliency(data, ctx, width, height);
|
||||
}
|
||||
},
|
||||
state: "NO_IMAGE",
|
||||
image_data: null,
|
||||
|
@ -54,22 +54,19 @@ function toStringIfObject(input) {
|
||||
return input;
|
||||
}
|
||||
|
||||
function paintSaliency(data, width, height, ctx) {
|
||||
function paintSaliency(data, ctx, width, height) {
|
||||
var cell_width = width / data[0].length
|
||||
var cell_height = height / data.length
|
||||
var r = 0
|
||||
data.forEach(function(row) {
|
||||
var c = 0
|
||||
row.forEach(function(cell) {
|
||||
if (cell < 0.25) {
|
||||
ctx.fillStyle = "white";
|
||||
} else if (cell < 0.5) {
|
||||
ctx.fillStyle = "#add8ed";
|
||||
} else if (cell < 0.75) {
|
||||
ctx.fillStyle = "#5aa7d3";
|
||||
if (cell < 0) {
|
||||
var color = [7,47,95];
|
||||
} else {
|
||||
ctx.fillStyle = "#072F5F";
|
||||
var color = [112,62,8];
|
||||
}
|
||||
ctx.fillStyle = colorToString(interpolate(cell, [255,255,255], color));
|
||||
ctx.fillRect(c * cell_width, r * cell_height, cell_width, cell_height);
|
||||
c++;
|
||||
})
|
||||
@ -77,6 +74,29 @@ function paintSaliency(data, width, height, ctx) {
|
||||
})
|
||||
}
|
||||
|
||||
function getObjectFitSize(contains /* true = contain, false = cover */, containerWidth, containerHeight, width, height){
|
||||
var doRatio = width / height;
|
||||
var cRatio = containerWidth / containerHeight;
|
||||
var targetWidth = 0;
|
||||
var targetHeight = 0;
|
||||
var test = contains ? (doRatio > cRatio) : (doRatio < cRatio);
|
||||
|
||||
if (test) {
|
||||
targetWidth = containerWidth;
|
||||
targetHeight = targetWidth / doRatio;
|
||||
} else {
|
||||
targetHeight = containerHeight;
|
||||
targetWidth = targetHeight * doRatio;
|
||||
}
|
||||
|
||||
return {
|
||||
width: targetWidth,
|
||||
height: targetHeight,
|
||||
x: (containerWidth - targetWidth) / 2,
|
||||
y: (containerHeight - targetHeight) / 2
|
||||
};
|
||||
}
|
||||
|
||||
// val should be in the range [0.0, 1.0]
|
||||
// rgb1 and rgb2 should be an array of 3 values each in the range [0, 255]
|
||||
function interpolate(val, rgb1, rgb2) {
|
||||
@ -88,7 +108,6 @@ function interpolate(val, rgb1, rgb2) {
|
||||
return rgb;
|
||||
}
|
||||
|
||||
// quick helper function to convert the array into something we can use for css
|
||||
function colorToString(rgb) {
|
||||
return "rgb(" + rgb[0] + ", " + rgb[1] + ", " + rgb[2] + ")";
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user