mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-12 10:34:32 +08:00
Merge branch 'blocks-tests' of https://github.com/gradio-app/gradio into blocks-tests
This commit is contained in:
commit
839dcd6bb4
@ -17,7 +17,7 @@ def chat(message, history):
|
||||
return history, history
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
chat,
|
||||
["text", "state"],
|
||||
["chatbot", "state"],
|
||||
@ -25,4 +25,4 @@ iface = gr.Interface(
|
||||
allow_flagging="never",
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -11,15 +11,15 @@ def diff_texts(text1, text2):
|
||||
]
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
diff_texts,
|
||||
[
|
||||
gr.inputs.Textbox(
|
||||
gr.Textbox(
|
||||
lines=3, default="The quick brown fox jumped over the lazy dogs."
|
||||
),
|
||||
gr.inputs.Textbox(lines=3, default="The fast brown fox jumps over lazy dogs."),
|
||||
gr.Textbox(lines=3, default="The fast brown fox jumps over lazy dogs."),
|
||||
],
|
||||
gr.outputs.HighlightedText(color_map={"+": "green", "-": "pink"}),
|
||||
gr.HighlightedText(),
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -18,20 +18,18 @@ def recognize_digit(image):
|
||||
return {str(i): prediction[i] for i in range(10)}
|
||||
|
||||
|
||||
im = gradio.inputs.Image(
|
||||
im = gradio.Image(
|
||||
shape=(28, 28), image_mode="L", invert_colors=False, source="canvas"
|
||||
)
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
recognize_digit,
|
||||
im,
|
||||
gradio.outputs.Label(num_top_classes=3),
|
||||
gradio.Label(num_top_classes=3),
|
||||
live=True,
|
||||
interpretation="default",
|
||||
capture_session=True,
|
||||
)
|
||||
|
||||
iface.test_launch()
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -25,18 +25,18 @@ def disease_report(img, scan_for, generate_report):
|
||||
return results, report if generate_report else None
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
disease_report,
|
||||
[
|
||||
"image",
|
||||
gr.inputs.CheckboxGroup(
|
||||
gr.CheckboxGroup(
|
||||
["Cancer", "Rash", "Heart Failure", "Stroke", "Diabetes", "Pneumonia"]
|
||||
),
|
||||
"checkbox",
|
||||
],
|
||||
[
|
||||
gr.outputs.Carousel(["text", "image"], label="Disease"),
|
||||
gr.outputs.File(label="Report"),
|
||||
gr.Carousel(["text", "image"], label="Disease"),
|
||||
gr.File(label="Report"),
|
||||
],
|
||||
title="Disease Report",
|
||||
description="Upload an Xray and select the diseases to scan for.",
|
||||
@ -46,4 +46,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -5,21 +5,19 @@ def filter_records(records, gender):
|
||||
return records[records["gender"] == gender]
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
filter_records,
|
||||
[
|
||||
gr.inputs.Dataframe(
|
||||
gr.Dataframe(
|
||||
headers=["name", "age", "gender"],
|
||||
datatype=["str", "number", "str"],
|
||||
row_count=5,
|
||||
),
|
||||
gr.inputs.Dropdown(["M", "F", "O"]),
|
||||
gr.Dropdown(["M", "F", "O"]),
|
||||
],
|
||||
"dataframe",
|
||||
description="Enter gender as 'M', 'F', or 'O' for other.",
|
||||
)
|
||||
|
||||
iface.test_launch()
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -1,5 +1,3 @@
|
||||
import random
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
@ -24,19 +22,19 @@ def plot_forecast(final_year, companies, noise, show_legend, point_style):
|
||||
return fig
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
plot_forecast,
|
||||
[
|
||||
gr.inputs.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
||||
gr.inputs.CheckboxGroup(
|
||||
gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
||||
gr.CheckboxGroup(
|
||||
["Google", "Microsoft", "Gradio"], label="Company Selection"
|
||||
),
|
||||
gr.inputs.Slider(1, 100, label="Noise Level"),
|
||||
gr.inputs.Checkbox(label="Show Legend"),
|
||||
gr.inputs.Dropdown(["cross", "line", "circle"], label="Style"),
|
||||
gr.Slider(minimum=1, maximum=100, label="Noise Level"),
|
||||
gr.Checkbox(label="Show Legend"),
|
||||
gr.Dropdown(["cross", "line", "circle"], label="Style"),
|
||||
],
|
||||
gr.outputs.Image(plot=True, label="forecast"),
|
||||
gr.Image(plot=True, label="forecast"),
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -1,7 +1,5 @@
|
||||
import random
|
||||
|
||||
import pandas as pd
|
||||
|
||||
import gradio as gr
|
||||
|
||||
|
||||
@ -19,20 +17,20 @@ def fraud_detector(card_activity, categories, sensitivity):
|
||||
)
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fraud_detector,
|
||||
[
|
||||
gr.inputs.Timeseries(x="time", y=["retail", "food", "other"]),
|
||||
gr.inputs.CheckboxGroup(
|
||||
["retail", "food", "other"], default=["retail", "food", "other"]
|
||||
gr.Timeseries(x="time", y=["retail", "food", "other"]),
|
||||
gr.CheckboxGroup(
|
||||
["retail", "food", "other"], default_selected=["retail", "food", "other"]
|
||||
),
|
||||
gr.inputs.Slider(1, 3),
|
||||
gr.Slider(minimum=1, maximum=3),
|
||||
],
|
||||
[
|
||||
"dataframe",
|
||||
gr.outputs.Timeseries(x="time", y=["retail", "food", "other"]),
|
||||
gr.outputs.Label(label="Fraud Level"),
|
||||
gr.Timeseries(x="time", y=["retail", "food", "other"]),
|
||||
gr.Label(label="Fraud Level"),
|
||||
],
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -31,12 +31,12 @@ def interpret_gender(sentence):
|
||||
return interpretation
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fn=gender_of_sentence,
|
||||
inputs=gr.inputs.Textbox(default="She went to his house to get her keys."),
|
||||
inputs=gr.Textbox(default="She went to his house to get her keys."),
|
||||
outputs="label",
|
||||
interpretation=interpret_gender,
|
||||
enable_queue=True,
|
||||
interpretation=interpret_gender
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch(auth=("a", "b"))
|
||||
|
@ -1,5 +1,3 @@
|
||||
import re
|
||||
|
||||
import gradio as gr
|
||||
|
||||
male_words, female_words = ["he", "his", "him"], ["she", "hers", "her"]
|
||||
@ -14,11 +12,12 @@ def gender_of_sentence(sentence):
|
||||
return {"male": male_count / total, "female": female_count / total}
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fn=gender_of_sentence,
|
||||
inputs=gr.inputs.Textbox(default="She went to his house to get her keys."),
|
||||
inputs=gr.Textbox(default="She went to his house to get her keys."),
|
||||
outputs="label",
|
||||
interpretation="default",
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -15,7 +15,7 @@ def generate_tone(note, octave, duration):
|
||||
return sr, audio
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
generate_tone,
|
||||
[
|
||||
gr.inputs.Dropdown(notes, type="index"),
|
||||
@ -26,4 +26,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -8,9 +8,12 @@ examples = [
|
||||
["The smooth Borealis basin in the Northern Hemisphere covers 40%"],
|
||||
]
|
||||
|
||||
gr.Interface.load(
|
||||
demo = gr.Interface.load(
|
||||
"huggingface/EleutherAI/gpt-j-6B",
|
||||
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
|
||||
inputs=gr.Textbox(lines=5, label="Input Text"),
|
||||
title=title,
|
||||
examples=examples,
|
||||
).launch()
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -7,6 +7,6 @@ def greet(name):
|
||||
return "Hello " + name + "!!"
|
||||
|
||||
|
||||
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
||||
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
||||
if __name__ == "__main__":
|
||||
iface.launch(auth=lambda u, p: user_db.get(u) == p)
|
||||
demo.launch(auth=lambda u, p: user_db.get(u) == p)
|
||||
|
@ -5,6 +5,7 @@ def greet(name):
|
||||
return "Hello " + name + "!!"
|
||||
|
||||
|
||||
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
||||
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -5,10 +5,11 @@ def greet(name):
|
||||
return "Hello " + name + "!"
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fn=greet,
|
||||
inputs=gr.inputs.Textbox(lines=2, placeholder="Name Here..."),
|
||||
inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
|
||||
outputs="text",
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
app, local_url, share_url = iface.launch()
|
||||
app, local_url, share_url = demo.launch()
|
||||
|
@ -8,10 +8,10 @@ def greet(name, is_morning, temperature):
|
||||
return greeting, round(celsius, 2)
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fn=greet,
|
||||
inputs=["text", "checkbox", gr.inputs.Slider(0, 100)],
|
||||
inputs=["text", "checkbox", gr.Slider(0, 100)],
|
||||
outputs=["text", "number"],
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -17,12 +17,15 @@ def classify_image(inp):
|
||||
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
||||
|
||||
|
||||
image = gr.inputs.Image(shape=(224, 224))
|
||||
label = gr.outputs.Label(num_top_classes=3)
|
||||
image = gr.Image(shape=(224, 224))
|
||||
label = gr.Label(num_top_classes=3)
|
||||
|
||||
gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fn=classify_image,
|
||||
inputs=image,
|
||||
outputs=label,
|
||||
examples=[["images/cheetah1.jpg"], ["images/lion.jpg"]],
|
||||
).launch()
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -20,6 +20,10 @@ def predict(inp):
|
||||
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
||||
|
||||
|
||||
inputs = gr.inputs.Image()
|
||||
outputs = gr.outputs.Label(num_top_classes=3)
|
||||
gr.Interface(fn=predict, inputs=inputs, outputs=outputs).launch()
|
||||
inputs = gr.Image()
|
||||
outputs = gr.Label(num_top_classes=3)
|
||||
|
||||
demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -17,9 +17,11 @@ def classify_image(inp):
|
||||
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
||||
|
||||
|
||||
image = gr.inputs.Image(shape=(224, 224))
|
||||
label = gr.outputs.Label(num_top_classes=3)
|
||||
image = gr.Image(shape=(224, 224))
|
||||
label = gr.Label(num_top_classes=3)
|
||||
|
||||
gr.Interface(
|
||||
fn=classify_image, inputs=image, outputs=label, interpretation="default"
|
||||
).launch()
|
||||
demo = gr.Interface(fn=classify_image, inputs=image, outputs=label,
|
||||
interpretation="default")
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
@ -5,6 +5,7 @@ def image_mod(image):
|
||||
return image.rotate(45)
|
||||
|
||||
|
||||
iface = gr.Interface(image_mod, gr.inputs.Image(type="pil"), "image")
|
||||
demo = gr.Interface(image_mod, gr.inputs.Image(type="pil"), "image")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -4,13 +4,14 @@ import gradio as gr
|
||||
def image_mod(text):
|
||||
return text[::-1]
|
||||
|
||||
block = gr.Blocks()
|
||||
demo = gr.Blocks()
|
||||
|
||||
with block:
|
||||
with demo:
|
||||
text = gr.Textbox()
|
||||
btn = gr.Button("Run")
|
||||
btn.click(image_mod, text, text)
|
||||
|
||||
print(block.get_config_file())
|
||||
print(demo.get_config_file())
|
||||
|
||||
if __name__ == "__main__":
|
||||
block.launch()
|
||||
demo.launch()
|
||||
|
@ -82,48 +82,48 @@ def fn(
|
||||
)
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
fn,
|
||||
inputs=[
|
||||
gr.inputs.Textbox(default="Lorem ipsum", label="Textbox"),
|
||||
gr.inputs.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"),
|
||||
gr.inputs.Number(label="Number", default=42),
|
||||
gr.inputs.Slider(minimum=10, maximum=20, default=15, label="Slider: 10 - 20"),
|
||||
gr.inputs.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
|
||||
gr.inputs.Checkbox(label="Checkbox"),
|
||||
gr.inputs.CheckboxGroup(
|
||||
label="CheckboxGroup", choices=CHOICES, default=CHOICES[0:2]
|
||||
gr.Textbox(default_value="Lorem ipsum", label="Textbox"),
|
||||
gr.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"),
|
||||
gr.Number(label="Number", default=42),
|
||||
gr.Slider(minimum=10, maximum=20, default_value=15, label="Slider: 10 - 20"),
|
||||
gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
|
||||
gr.Checkbox(label="Checkbox"),
|
||||
gr.CheckboxGroup(
|
||||
label="CheckboxGroup", choices=CHOICES, default_selected=CHOICES[0:2]
|
||||
),
|
||||
gr.inputs.Radio(label="Radio", choices=CHOICES, default=CHOICES[2]),
|
||||
gr.inputs.Dropdown(label="Dropdown", choices=CHOICES),
|
||||
gr.inputs.Image(label="Image", optional=True),
|
||||
gr.inputs.Image(label="Image w/ Cropper", tool="select", optional=True),
|
||||
gr.inputs.Image(label="Sketchpad", source="canvas", optional=True),
|
||||
gr.inputs.Image(label="Webcam", source="webcam", optional=True),
|
||||
gr.inputs.Video(label="Video", optional=True),
|
||||
gr.inputs.Audio(label="Audio", optional=True),
|
||||
gr.inputs.Audio(label="Microphone", source="microphone", optional=True),
|
||||
gr.inputs.File(label="File", optional=True),
|
||||
gr.inputs.Dataframe(label="Dataframe", headers=["Name", "Age", "Gender"]),
|
||||
gr.inputs.Timeseries(x="time", y=["price", "value"], optional=True),
|
||||
gr.Radio(label="Radio", choices=CHOICES, default_selected=CHOICES[2]),
|
||||
gr.Dropdown(label="Dropdown", choices=CHOICES),
|
||||
gr.Image(label="Image"),
|
||||
gr.Image(label="Image w/ Cropper", tool="select"),
|
||||
gr.Image(label="Sketchpad", source="canvas"),
|
||||
gr.Image(label="Webcam", source="webcam"),
|
||||
gr.Video(label="Video"),
|
||||
gr.Audio(label="Audio"),
|
||||
gr.Audio(label="Microphone", source="microphone"),
|
||||
gr.File(label="File"),
|
||||
gr.Dataframe(label="Dataframe", headers=["Name", "Age", "Gender"]),
|
||||
gr.Timeseries(x="time", y=["price", "value"]),
|
||||
],
|
||||
outputs=[
|
||||
gr.outputs.Textbox(label="Textbox"),
|
||||
gr.outputs.Label(label="Label"),
|
||||
gr.outputs.Audio(label="Audio"),
|
||||
gr.outputs.Image(label="Image"),
|
||||
gr.outputs.Video(label="Video"),
|
||||
gr.outputs.HighlightedText(
|
||||
gr.Textbox(label="Textbox"),
|
||||
gr.Label(label="Label"),
|
||||
gr.Audio(label="Audio"),
|
||||
gr.Image(label="Image"),
|
||||
gr.Video(label="Video"),
|
||||
gr.HighlightedText(
|
||||
label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}
|
||||
),
|
||||
gr.outputs.HighlightedText(label="HighlightedText", show_legend=True),
|
||||
gr.outputs.JSON(label="JSON"),
|
||||
gr.outputs.HTML(label="HTML"),
|
||||
gr.outputs.File(label="File"),
|
||||
gr.outputs.Dataframe(label="Dataframe"),
|
||||
gr.outputs.Dataframe(label="Numpy", type="numpy"),
|
||||
gr.outputs.Carousel("image", label="Carousel"),
|
||||
gr.outputs.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
|
||||
gr.HighlightedText(label="HighlightedText", show_legend=True),
|
||||
gr.JSON(label="JSON"),
|
||||
gr.HTML(label="HTML"),
|
||||
gr.File(label="File"),
|
||||
gr.Dataframe(label="Dataframe"),
|
||||
gr.Dataframe(label="Numpy"),
|
||||
gr.Carousel(components="image", label="Carousel"),
|
||||
gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
|
||||
],
|
||||
examples=[
|
||||
[
|
||||
@ -156,4 +156,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -9,11 +9,10 @@ def longest_word(text):
|
||||
|
||||
ex = "The quick brown fox jumped over the lazy dog."
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
longest_word, "textbox", "label", interpretation="default", examples=[[ex]]
|
||||
)
|
||||
|
||||
iface.test_launch()
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -37,13 +37,14 @@ def main_note(audio):
|
||||
if pitch not in volume_per_pitch:
|
||||
volume_per_pitch[pitch] = 0
|
||||
volume_per_pitch[pitch] += 1.0 * volume / total_volume
|
||||
volume_per_pitch = {k:float(v) for k,v in volume_per_pitch.items()}
|
||||
return volume_per_pitch
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
main_note,
|
||||
"audio",
|
||||
gr.outputs.Label(num_top_classes=4),
|
||||
gr.Audio(source="microphone"),
|
||||
gr.Label(num_top_classes=4),
|
||||
examples=[
|
||||
["audio/recording1.wav"],
|
||||
["audio/cantina.wav"],
|
||||
@ -52,4 +53,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -7,9 +7,9 @@ def transpose(matrix):
|
||||
return matrix.T
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
transpose,
|
||||
gr.inputs.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3),
|
||||
gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3),
|
||||
"numpy",
|
||||
examples=[
|
||||
[np.zeros((3, 3)).tolist()],
|
||||
@ -20,7 +20,5 @@ iface = gr.Interface(
|
||||
],
|
||||
)
|
||||
|
||||
iface.test_launch()
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -27,17 +27,17 @@ def outbreak(r, month, countries, social_distancing):
|
||||
return plt
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
outbreak,
|
||||
[
|
||||
gr.inputs.Slider(1, 4, default=3.2, label="R"),
|
||||
gr.inputs.Dropdown(
|
||||
gr.Slider(minimum=1, maximum=4, default_value=3.2, label="R"),
|
||||
gr.Dropdown(
|
||||
["January", "February", "March", "April", "May"], label="Month"
|
||||
),
|
||||
gr.inputs.CheckboxGroup(["USA", "Canada", "Mexico", "UK"], label="Countries"),
|
||||
gr.inputs.Checkbox(label="Social Distancing?"),
|
||||
gr.CheckboxGroup(["USA", "Canada", "Mexico", "UK"], label="Countries"),
|
||||
gr.Checkbox(label="Social Distancing?"),
|
||||
],
|
||||
"plot",
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -7,18 +7,21 @@ examples = [
|
||||
]
|
||||
]
|
||||
|
||||
gr.Interface.load(
|
||||
demo = gr.Interface.load(
|
||||
"huggingface/deepset/roberta-base-squad2",
|
||||
inputs=[
|
||||
gr.inputs.Textbox(
|
||||
gr.Textbox(
|
||||
lines=5, label="Context", placeholder="Type a sentence or paragraph here."
|
||||
),
|
||||
gr.inputs.Textbox(
|
||||
gr.Textbox(
|
||||
lines=2,
|
||||
label="Question",
|
||||
placeholder="Ask a question based on the context.",
|
||||
),
|
||||
],
|
||||
outputs=[gr.outputs.Textbox(label="Answer"), gr.outputs.Label(label="Probability")],
|
||||
outputs=[gr.Textbox(label="Answer"), gr.Label(label="Probability")],
|
||||
examples=examples,
|
||||
).launch()
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -8,7 +8,7 @@ def reverse_audio(audio):
|
||||
return (sr, np.flipud(data))
|
||||
|
||||
|
||||
iface = gr.Interface(reverse_audio, "microphone", "audio", examples="audio")
|
||||
demo = gr.Interface(reverse_audio, "microphone", "audio", examples="audio")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -24,9 +24,9 @@ def sales_projections(employee_data):
|
||||
return employee_data, plt.gcf(), regression_values
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
sales_projections,
|
||||
gr.inputs.Dataframe(
|
||||
gr.Dataframe(
|
||||
headers=["Name", "Jan Sales", "Feb Sales", "Mar Sales"],
|
||||
default=[["Jon", 12, 14, 18], ["Alice", 14, 17, 2], ["Sana", 8, 9.5, 12]],
|
||||
),
|
||||
@ -34,4 +34,4 @@ iface = gr.Interface(
|
||||
description="Enter sales figures for employees to predict sales trajectory over year.",
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -5,14 +5,14 @@ def sentence_builder(quantity, animal, place, activity_list, morning):
|
||||
return f"""The {quantity} {animal}s went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
sentence_builder,
|
||||
[
|
||||
gr.inputs.Slider(2, 20),
|
||||
gr.inputs.Dropdown(["cat", "dog", "bird"]),
|
||||
gr.inputs.Radio(["park", "zoo", "road"]),
|
||||
gr.inputs.CheckboxGroup(["ran", "swam", "ate", "slept"]),
|
||||
gr.inputs.Checkbox(label="Is it the morning?"),
|
||||
gr.Slider(minimum=2, maximum=20),
|
||||
gr.Dropdown(["cat", "dog", "bird"]),
|
||||
gr.Radio(["park", "zoo", "road"]),
|
||||
gr.CheckboxGroup(["ran", "swam", "ate", "slept"]),
|
||||
gr.Checkbox(label="Is it the morning?"),
|
||||
],
|
||||
"text",
|
||||
examples=[
|
||||
@ -24,4 +24,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -13,8 +13,7 @@ def sentiment_analysis(text):
|
||||
return scores
|
||||
|
||||
|
||||
iface = gr.Interface(sentiment_analysis, "textbox", "label", interpretation="default")
|
||||
demo = gr.Interface(sentiment_analysis, "textbox", "label", interpretation="default")
|
||||
|
||||
iface.test_launch()
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -12,7 +12,7 @@ def sepia(input_img):
|
||||
return sepia_img
|
||||
|
||||
|
||||
iface = gr.Interface(sepia, gr.inputs.Image(shape=(200, 200)), "image")
|
||||
demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), "image")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -16,8 +16,7 @@ def spectrogram(audio):
|
||||
return plt
|
||||
|
||||
|
||||
iface = gr.Interface(spectrogram, "audio", "plot")
|
||||
demo = gr.Interface(spectrogram, "audio", "plot")
|
||||
|
||||
iface.test_launch()
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
29
demo/speech_text_length_blocks/run.py
Normal file
29
demo/speech_text_length_blocks/run.py
Normal file
@ -0,0 +1,29 @@
|
||||
from transformers import pipeline
|
||||
|
||||
import gradio as gr
|
||||
|
||||
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
||||
classifier = pipeline("text-classification")
|
||||
|
||||
def speech_to_text(speech):
|
||||
text = asr(speech)["text"]
|
||||
return text
|
||||
|
||||
def text_to_sentiment(text):
|
||||
return classifier(text)[0]["label"]
|
||||
|
||||
demo = gr.Blocks()
|
||||
|
||||
with demo:
|
||||
m = gr.Audio(type="filepath")
|
||||
t = gr.Textbox()
|
||||
l = gr.Label()
|
||||
|
||||
b1 = gr.Button("Recognize Speech")
|
||||
b2 = gr.Button("Classify Sentiment")
|
||||
|
||||
b1.click(speech_to_text, inputs=m, outputs=t)
|
||||
b2.click(text_to_sentiment, inputs=t, outputs=l)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
@ -22,18 +22,17 @@ def stock_forecast(final_year, companies, noise, show_legend, point_style):
|
||||
return fig
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
stock_forecast,
|
||||
[
|
||||
gr.inputs.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
||||
gr.inputs.CheckboxGroup(["Google", "Microsoft", "Gradio"]),
|
||||
gr.inputs.Slider(1, 100),
|
||||
gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
||||
gr.CheckboxGroup(["Google", "Microsoft", "Gradio"]),
|
||||
gr.Slider(minimum=1, maximum=100),
|
||||
"checkbox",
|
||||
gr.inputs.Dropdown(["cross", "line", "circle"], label="Style"),
|
||||
gr.Dropdown(["cross", "line", "circle"], label="Style"),
|
||||
],
|
||||
gr.outputs.Image(plot=True, label="forecast"),
|
||||
gr.Image(plot=True, label="forecast"),
|
||||
)
|
||||
|
||||
iface.test_launch()
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -19,19 +19,18 @@ def tax_calculator(income, marital_status, assets):
|
||||
return round(total_tax)
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
tax_calculator,
|
||||
[
|
||||
"number",
|
||||
gr.inputs.Radio(["Single", "Married", "Divorced"]),
|
||||
gr.inputs.Dataframe(
|
||||
gr.Radio(["Single", "Married", "Divorced"]),
|
||||
gr.Dataframe(
|
||||
headers=["Item", "Cost", "Deduct"],
|
||||
datatype=["str", "number", "bool"],
|
||||
label="Assets Purchased this Year",
|
||||
),
|
||||
],
|
||||
"number",
|
||||
# interpretation="default", # Removed interpretation for dataframes
|
||||
examples=[
|
||||
[10000, "Married", [["Car", 5000, False], ["Laptop", 800, True]]],
|
||||
[80000, "Single", [["Suit", 800, True], ["Watch", 1800, False]]],
|
||||
@ -39,4 +38,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -26,9 +26,9 @@ def text_analysis(text):
|
||||
return pos_tokens, pos_count, html
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
text_analysis,
|
||||
gr.inputs.Textbox(placeholder="Enter sentence here..."),
|
||||
gr.Textbox(placeholder="Enter sentence here..."),
|
||||
["highlight", "key_values", "html"],
|
||||
examples=[
|
||||
["What a beautiful morning for a walk!"],
|
||||
@ -36,6 +36,5 @@ iface = gr.Interface(
|
||||
],
|
||||
)
|
||||
|
||||
iface.test_launch()
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -1,11 +1,7 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import sklearn
|
||||
from sklearn import preprocessing
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
import gradio as gr
|
||||
@ -88,20 +84,20 @@ def predict_survival(passenger_class, is_male, age, company, fare, embark_point)
|
||||
df = encode_age(df)
|
||||
df = encode_fare(df)
|
||||
pred = clf.predict_proba(df)[0]
|
||||
return {"Perishes": pred[0], "Survives": pred[1]}
|
||||
return {"Perishes": float(pred[0]), "Survives": float(pred[1])}
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
predict_survival,
|
||||
[
|
||||
gr.inputs.Dropdown(["first", "second", "third"], type="index"),
|
||||
gr.Dropdown(["first", "second", "third"], type="index"),
|
||||
"checkbox",
|
||||
gr.inputs.Slider(0, 80),
|
||||
gr.inputs.CheckboxGroup(
|
||||
gr.Slider(minimum=0, maximum=80),
|
||||
gr.CheckboxGroup(
|
||||
["Sibling", "Child"], label="Travelling with (select all)"
|
||||
),
|
||||
gr.inputs.Number(),
|
||||
gr.inputs.Radio(["S", "C", "Q"], type="index"),
|
||||
gr.Number(),
|
||||
gr.Radio(["S", "C", "Q"], type="index"),
|
||||
],
|
||||
"label",
|
||||
examples=[
|
||||
@ -113,4 +109,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -5,7 +5,7 @@ def video_flip(video):
|
||||
return video
|
||||
|
||||
|
||||
iface = gr.Interface(video_flip, gr.inputs.Video(source="webcam"), "playable_video")
|
||||
demo = gr.Interface(video_flip, gr.Video(source="webcam"), "playable_video")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -7,6 +7,7 @@ def snap(image):
|
||||
return np.flipud(image)
|
||||
|
||||
|
||||
iface = gr.Interface(snap, gr.inputs.Image(source="webcam", tool=None), "image")
|
||||
demo = gr.Interface(snap, gr.Image(source="webcam", tool=None), "image")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -6,7 +6,7 @@ Example: python write_config.py calculator output.json
|
||||
Assumes:
|
||||
- The demo_name is a folder in this directory
|
||||
- The demo_name folder contains a run.py file
|
||||
- The run.py which defines a Gradio Interface/Blocks instance called demo
|
||||
- The run.py file defines a Gradio Interface/Blocks instance called `demo`
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
@ -1,4 +1,3 @@
|
||||
from textwrap import indent
|
||||
import gradio as gr
|
||||
|
||||
import random
|
||||
@ -6,26 +5,26 @@ import random
|
||||
xray_model = lambda diseases, img: {disease: random.random() for disease in diseases}
|
||||
ct_model = lambda diseases, img: {disease: 0.1 for disease in diseases}
|
||||
|
||||
xray_blocks = gr.Blocks()
|
||||
demo = gr.Blocks()
|
||||
|
||||
with xray_blocks:
|
||||
gr.components.Markdown(
|
||||
"""
|
||||
# Detect Disease From Scan
|
||||
With this model you can lorem ipsum
|
||||
- ipsum 1
|
||||
- ipsum 2
|
||||
"""
|
||||
with demo:
|
||||
gr.Markdown(
|
||||
"""
|
||||
# Detect Disease From Scan
|
||||
With this model you can lorem ipsum
|
||||
- ipsum 1
|
||||
- ipsum 2
|
||||
"""
|
||||
)
|
||||
disease = gr.components.CheckboxGroup(
|
||||
disease = gr.CheckboxGroup(
|
||||
choices=["Covid", "Malaria", "Lung Cancer"], label="Disease to Scan For"
|
||||
)
|
||||
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("X-ray"):
|
||||
with gr.Row():
|
||||
xray_scan = gr.components.Image()
|
||||
xray_results = gr.components.JSON()
|
||||
xray_scan = gr.Image()
|
||||
xray_results = gr.JSON()
|
||||
xray_run = gr.Button(
|
||||
"Run", css={"background-color": "red", "--hover-color": "orange"}
|
||||
)
|
||||
@ -35,12 +34,12 @@ with xray_blocks:
|
||||
|
||||
with gr.TabItem("CT Scan"):
|
||||
with gr.Row():
|
||||
ct_scan = gr.components.Image()
|
||||
ct_results = gr.components.JSON()
|
||||
ct_scan = gr.Image()
|
||||
ct_results = gr.JSON()
|
||||
ct_run = gr.Button("Run")
|
||||
ct_run.click(ct_model, inputs=[disease, ct_scan], outputs=ct_results)
|
||||
|
||||
overall_probability = gr.components.Textbox()
|
||||
overall_probability = gr.Textbox()
|
||||
|
||||
print(xray_blocks.get_config_file())
|
||||
xray_blocks.launch()
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -17,6 +17,7 @@ def zip_to_json(file_obj):
|
||||
return files
|
||||
|
||||
|
||||
iface = gr.Interface(zip_to_json, "file", "json")
|
||||
demo = gr.Interface(zip_to_json, "file", "json")
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -10,7 +10,7 @@ def zip_two_files(file1, file2):
|
||||
return "tmp.zip"
|
||||
|
||||
|
||||
iface = gr.Interface(
|
||||
demo = gr.Interface(
|
||||
zip_two_files,
|
||||
["file", "file"],
|
||||
"file",
|
||||
@ -20,4 +20,4 @@ iface = gr.Interface(
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
iface.launch()
|
||||
demo.launch()
|
||||
|
@ -658,6 +658,10 @@ class Interface(Blocks):
|
||||
return interpretation.run_interpret(self, raw_input)
|
||||
|
||||
def test_launch(self) -> None:
|
||||
"""
|
||||
Passes a few samples through the function to test if the inputs/outputs
|
||||
components are consistent with the function parameter and return values.
|
||||
"""
|
||||
for predict_fn in self.predict:
|
||||
print("Test launch: {}()...".format(predict_fn.__name__), end=" ")
|
||||
raw_input = []
|
||||
|
Loading…
Reference in New Issue
Block a user