mirror of
https://github.com/gradio-app/gradio.git
synced 2025-03-07 11:46:51 +08:00
Merge branch 'master' of https://github.com/gradio-app/gradio
This commit is contained in:
commit
7e7629c65d
@ -23,4 +23,4 @@ gr.Interface(flip2,
|
||||
["images/cheetah2.jpg"],
|
||||
["images/lion.jpg"],
|
||||
]
|
||||
).launch()
|
||||
).launch(share=False)
|
||||
|
@ -1,2 +0,0 @@
|
||||
recursive-include gradio/templates *
|
||||
recursive-include gradio/static *
|
@ -1,170 +0,0 @@
|
||||
[](https://circleci.com/gh/gradio-app/gradio) [](https://badge.fury.io/py/gradio)
|
||||
|
||||
# Welcome to `gradio` :rocket:
|
||||
|
||||
Quickly create customizable UI components around your TensorFlow or PyTorch models, or even arbitrary Python functions. Mix and match components to support any combination of inputs and outputs. Gradio makes it easy for you to "play around" with your model in your browser by dragging-and-dropping in your own images (or pasting your own text, recording your own voice, etc.) and seeing what the model outputs. You can also generate a share link which allows anyone, anywhere to use the interface as the model continues to run on your machine. Our core library is free and open-source! Take a look:
|
||||
|
||||
<p align="center">
|
||||
<img src="https://i.ibb.co/m0skD0j/bert.gif" alt="drawing"/>
|
||||
</p>
|
||||
|
||||
Gradio is useful for:
|
||||
* Creating demos of your machine learning code for clients / collaborators / users
|
||||
* Getting feedback on model performance from users
|
||||
* Debugging your model interactively during development
|
||||
|
||||
To get a sense of `gradio`, take a look at a few of these examples, and find more on our website: www.gradio.app.
|
||||
|
||||
## Installation
|
||||
```
|
||||
pip install gradio
|
||||
```
|
||||
(you may need to replace `pip` with `pip3` if you're running `python3`).
|
||||
|
||||
## Usage
|
||||
|
||||
Gradio is very easy to use with your existing code. Here are a few working examples:
|
||||
|
||||
### 0. Hello World [](https://colab.research.google.com/drive/18ODkJvyxHutTN0P5APWyGFO_xwNcgHDZ?usp=sharing)
|
||||
|
||||
Let's start with a basic function (no machine learning yet!) that greets an input name. We'll wrap the function with a `Text` to `Text` interface.
|
||||
|
||||
```python
|
||||
import gradio as gr
|
||||
|
||||
def greet(name):
|
||||
return "Hello " + name + "!"
|
||||
|
||||
gr.Interface(fn=greet, inputs="text", outputs="text").launch()
|
||||
```
|
||||
|
||||
The core Interface class is initialized with three parameters:
|
||||
|
||||
- `fn`: the function to wrap
|
||||
- `inputs`: the name of the input interface
|
||||
- `outputs`: the name of the output interface
|
||||
|
||||
Calling the `launch()` function of the `Interface` object produces the interface shown in image below. Click on the gif to go the live interface in our getting started page.
|
||||
|
||||
<a href="https://gradio.app/getting_started#interface_4">
|
||||
<p align="center">
|
||||
<img src="https://i.ibb.co/T4Rqs5y/hello-name.gif" alt="drawing"/>
|
||||
</p>
|
||||
</a>
|
||||
|
||||
### 1. Inception Net [](https://colab.research.google.com/drive/1c6gQiW88wKBwWq96nqEwuQ1Kyt5LejiU?usp=sharing)
|
||||
|
||||
Now, let's do a machine learning example. We're going to wrap an
|
||||
interface around the InceptionV3 image classifier, which we'll load
|
||||
using Tensorflow! Since this is an image classification model, we will use the `Image` input interface.
|
||||
We'll output a dictionary of labels and their corresponding confidence scores with the `Label` output
|
||||
interface. (The original Inception Net architecture [can be found here](https://arxiv.org/abs/1409.4842))
|
||||
|
||||
```python
|
||||
import gradio as gr
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
inception_net = tf.keras.applications.InceptionV3() # load the model
|
||||
|
||||
# Download human-readable labels for ImageNet.
|
||||
response = requests.get("https://git.io/JJkYN")
|
||||
labels = response.text.split("\n")
|
||||
|
||||
def classify_image(inp):
|
||||
inp = inp.reshape((-1, 299, 299, 3))
|
||||
inp = tf.keras.applications.inception_v3.preprocess_input(inp)
|
||||
prediction = inception_net.predict(inp).flatten()
|
||||
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
||||
|
||||
image = gr.inputs.Image(shape=(299, 299, 3))
|
||||
label = gr.outputs.Label(num_top_classes=3)
|
||||
|
||||
gr.Interface(fn=classify_image, inputs=image, outputs=label).launch()
|
||||
```
|
||||
This code will produce the interface below. The interface gives you a way to test
|
||||
Inception Net by dragging and dropping images, and also allows you to use naturally modify the input image using image editing tools that
|
||||
appear when you click EDIT. Notice here we provided actual `gradio.inputs` and `gradio.outputs` objects to the Interface
|
||||
function instead of using string shortcuts. This lets us use built-in preprocessing (e.g. image resizing)
|
||||
and postprocessing (e.g. choosing the number of labels to display) provided by these
|
||||
interfaces.
|
||||
|
||||
<p align="center">
|
||||
<img src="https://i.ibb.co/X8KGJqB/inception-net-2.gif" alt="drawing"/>
|
||||
</p>
|
||||
|
||||
You can supply your own model instead of the pretrained model above, as well as use different kinds of models or functions. Here's a list of the interfaces we currently support, along with their preprocessing / postprocessing parameters:
|
||||
|
||||
**Input Interfaces**:
|
||||
- `Sketchpad(shape=(28, 28), invert_colors=True, flatten=False, scale=1/255, shift=0, dtype='float64')`
|
||||
- `Webcam(image_width=224, image_height=224, num_channels=3, label=None)`
|
||||
- `Textbox(lines=1, placeholder=None, label=None, numeric=False)`
|
||||
- `Radio(choices, label=None)`
|
||||
- `Dropdown(choices, label=None)`
|
||||
- `CheckboxGroup(choices, label=None)`
|
||||
- `Slider(minimum=0, maximum=100, default=None, label=None)`
|
||||
- `Image(shape=(224, 224, 3), image_mode='RGB', scale=1/127.5, shift=-1, label=None)`
|
||||
- `Microphone()`
|
||||
|
||||
**Output Interfaces**:
|
||||
- `Label(num_top_classes=None, label=None)`
|
||||
- `KeyValues(label=None)`
|
||||
- `Textbox(lines=1, placeholder=None, label=None)`
|
||||
- `Image(label=None, plot=False)`
|
||||
|
||||
Interfaces can also be combined together, for multiple-input or multiple-output models.
|
||||
|
||||
### 2. Real-Time MNIST [](https://colab.research.google.com/drive/1LXJqwdkZNkt1J_yfLWQ3FLxbG2cAF8p4?usp=sharing)
|
||||
|
||||
Let's wrap a fun `Sketchpad`-to-`Label` UI around MNIST. For this example, we'll take advantage of the `live`
|
||||
feature in the library. Set `live=True` inside `Interface()`> to have it run continuous predictions.
|
||||
We've abstracted the model training from the code below, but you can see the full code on the colab link.
|
||||
|
||||
```python
|
||||
import tensorflow as tf
|
||||
import gradio as gr
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
urlretrieve("https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5","mnist-model.h5")
|
||||
model = tf.keras.models.load_model("mnist-model.h5")
|
||||
|
||||
def recognize_digit(inp):
|
||||
prediction = model.predict(inp.reshape(1, 28, 28, 1)).tolist()[0]
|
||||
return {str(i): prediction[i] for i in range(10)}
|
||||
|
||||
sketchpad = gr.inputs.Sketchpad()
|
||||
label = gr.outputs.Label(num_top_classes=3)
|
||||
|
||||
gr.Interface(fn=recognize_digit, inputs=sketchpad,
|
||||
outputs=label, live=True).launch()
|
||||
```
|
||||
|
||||
This code will produce the interface below.
|
||||
|
||||
<p align="center">
|
||||
<img src="https://i.ibb.co/vkgZLcH/gif6.gif" alt="drawing"/>
|
||||
</p>
|
||||
|
||||
## Contributing:
|
||||
If you would like to contribute and your contribution is small, you can directly open a pull request (PR). If you would like to contribute a larger feature, we recommend first creating an issue with a proposed design for discussion. Please see our contributing guidelines for more info.
|
||||
|
||||
## License:
|
||||
Gradio is licensed under the Apache License 2.0
|
||||
|
||||
## See more:
|
||||
|
||||
You can find many more examples (like GPT-2, model comparison, multiple inputs, and numerical interfaces) as well as more info on usage on our website: www.gradio.app
|
||||
|
||||
See, also, the accompanying paper: ["Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild"](https://arxiv.org/pdf/1906.02569.pdf), *ICML HILL 2019*, and please use the citation below.
|
||||
|
||||
```
|
||||
@article{abid2019gradio,
|
||||
title={Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild},
|
||||
author={Abid, Abubakar and Abdalla, Ali and Abid, Ali and Khan, Dawood and Alfozan, Abdulrahman and Zou, James},
|
||||
journal={arXiv preprint arXiv:1906.02569},
|
||||
year={2019}
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -1 +0,0 @@
|
||||
from gradio.interface import * # This makes it possible to import `Interface` as `gradio.Interface`.
|
@ -1,68 +0,0 @@
|
||||
import json
|
||||
from gradio.inputs import AbstractInput
|
||||
from gradio.outputs import AbstractOutput
|
||||
from gradio.interface import Interface
|
||||
import inspect
|
||||
|
||||
def get_params(func):
|
||||
params_str = inspect.getdoc(func)
|
||||
params_doc = []
|
||||
documented_params = {"self"}
|
||||
for param_line in params_str.split("\n")[1:]:
|
||||
space_index = param_line.index(" ")
|
||||
colon_index = param_line.index(":")
|
||||
name = param_line[:space_index]
|
||||
documented_params.add(name)
|
||||
params_doc.append((name, param_line[space_index+2:colon_index-1], param_line[colon_index+2:]))
|
||||
params = inspect.getfullargspec(func)
|
||||
param_set = []
|
||||
for i in range(len(params.args)):
|
||||
neg_index = -1 - i
|
||||
if params.args[neg_index] not in documented_params:
|
||||
continue
|
||||
if i < len(params.defaults):
|
||||
default = params.defaults[neg_index]
|
||||
if type(default) == str:
|
||||
default = '"' + default + '"'
|
||||
else:
|
||||
default = str(default)
|
||||
param_set.insert(0, (params.args[neg_index], default))
|
||||
else:
|
||||
param_set.insert(0, (params.args[neg_index],))
|
||||
return param_set, params_doc
|
||||
|
||||
def document(cls_set):
|
||||
docset = []
|
||||
for cls in cls_set:
|
||||
inp = {}
|
||||
inp["name"] = cls.__name__
|
||||
doc = inspect.getdoc(cls)
|
||||
inp["doc"] = "\n".join(doc.split("\n")[:-1])
|
||||
inp["type"] = doc.split("\n")[-1].split("type: ")[-1]
|
||||
inp["params"], inp["params_doc"] = get_params(cls.__init__)
|
||||
inp["shortcuts"] = list(cls.get_shortcut_implementations().items())
|
||||
docset.append(inp)
|
||||
return docset
|
||||
|
||||
inputs = document(AbstractInput.__subclasses__())
|
||||
outputs = document(AbstractOutput.__subclasses__())
|
||||
interface_params = get_params(Interface.__init__)
|
||||
interface = {
|
||||
"doc": inspect.getdoc(Interface),
|
||||
"params": interface_params[0],
|
||||
"params_doc": interface_params[1],
|
||||
}
|
||||
launch_params = get_params(Interface.launch)
|
||||
launch = {
|
||||
"params": launch_params[0],
|
||||
"params_doc": launch_params[1],
|
||||
}
|
||||
|
||||
with open("docs.json", "w") as docs:
|
||||
json.dump({
|
||||
"inputs": inputs,
|
||||
"outputs": outputs,
|
||||
"interface": interface,
|
||||
"launch": launch
|
||||
}, docs)
|
||||
|
@ -1,422 +0,0 @@
|
||||
"""
|
||||
This module defines various classes that can serve as the `input` to an interface. Each class must inherit from
|
||||
`AbstractInput`, and each class must define a path to its template. All of the subclasses of `AbstractInput` are
|
||||
automatically added to a registry, which allows them to be easily referenced in other parts of the code.
|
||||
"""
|
||||
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import PIL.ImageOps
|
||||
import scipy.io.wavfile
|
||||
from gradio import processing_utils, validation_data
|
||||
|
||||
# Where to find the static resources associated with each template.
|
||||
# BASE_INPUT_INTERFACE_TEMPLATE_PATH = 'static/js/interfaces/input/{}.js'
|
||||
BASE_INPUT_INTERFACE_JS_PATH = 'static/js/interfaces/input/{}.js'
|
||||
|
||||
|
||||
class AbstractInput(ABC):
|
||||
"""
|
||||
An abstract class for defining the methods that all gradio inputs should have.
|
||||
When this is subclassed, it is automatically added to the registry
|
||||
"""
|
||||
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
|
||||
def get_validation_inputs(self):
|
||||
"""
|
||||
An interface can optionally implement a method that returns a list of examples inputs that it should be able to
|
||||
accept and preprocess for validation purposes.
|
||||
"""
|
||||
return []
|
||||
|
||||
def get_template_context(self):
|
||||
"""
|
||||
:return: a dictionary with context variables for the javascript file associated with the context
|
||||
"""
|
||||
return {"label": self.label}
|
||||
|
||||
def preprocess(self, inp):
|
||||
"""
|
||||
By default, no pre-processing is applied to text.
|
||||
"""
|
||||
return inp
|
||||
|
||||
def process_example(self, example):
|
||||
"""
|
||||
Proprocess example for UI
|
||||
"""
|
||||
return example
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
"""
|
||||
Return dictionary of shortcut implementations
|
||||
"""
|
||||
return {}
|
||||
|
||||
|
||||
class Textbox(AbstractInput):
|
||||
"""
|
||||
Component creates a textbox for user to enter input. Provides a string (or number is `is_numeric` is true) as an argument to the wrapped function.
|
||||
Input type: str
|
||||
"""
|
||||
|
||||
def __init__(self, lines=1, placeholder=None, default=None, numeric=False, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
lines (int): number of line rows to provide in textarea.
|
||||
placeholder (str): placeholder hint to provide behind textarea.
|
||||
default (str): default text to provide in textarea.
|
||||
numeric (bool): whether the input should be parsed as a number instead of a string.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.lines = lines
|
||||
self.placeholder = placeholder
|
||||
self.default = default
|
||||
self.numeric = numeric
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"lines": self.lines,
|
||||
"placeholder": self.placeholder,
|
||||
"default": self.default,
|
||||
**super().get_template_context()
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"text": {},
|
||||
"textbox": {"lines": 7},
|
||||
"number": {"numeric": True}
|
||||
}
|
||||
|
||||
def preprocess(self, inp):
|
||||
"""
|
||||
Cast type of input
|
||||
"""
|
||||
if self.numeric:
|
||||
return float(inp)
|
||||
else:
|
||||
return inp
|
||||
|
||||
|
||||
class Slider(AbstractInput):
|
||||
"""
|
||||
Component creates a slider that ranges from `minimum` to `maximum`. Provides a number as an argument to the wrapped function.
|
||||
Input type: float
|
||||
"""
|
||||
|
||||
def __init__(self, minimum=0, maximum=100, step=None, default=None, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
minimum (float): minimum value for slider.
|
||||
maximum (float): maximum value for slider.
|
||||
step (float): increment between slider values.
|
||||
default (float): default value.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.minimum = minimum
|
||||
self.maximum = maximum
|
||||
self.default = minimum if default is None else default
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"minimum": self.minimum,
|
||||
"maximum": self.maximum,
|
||||
"default": self.default,
|
||||
**super().get_template_context()
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"slider": {},
|
||||
}
|
||||
|
||||
|
||||
class Checkbox(AbstractInput):
|
||||
"""
|
||||
Component creates a checkbox that can be set to `True` or `False`. Provides a boolean as an argument to the wrapped function.
|
||||
Input type: bool
|
||||
"""
|
||||
|
||||
def __init__(self, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
super().__init__(label)
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"checkbox": {},
|
||||
}
|
||||
|
||||
|
||||
class CheckboxGroup(AbstractInput):
|
||||
"""
|
||||
Component creates a set of checkboxes of which a subset can be selected. Provides a list of strings representing the selected choices as an argument to the wrapped function.
|
||||
Input type: List[str]
|
||||
"""
|
||||
|
||||
def __init__(self, choices, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
choices (List[str]): list of options to select from.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.choices = choices
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"choices": self.choices,
|
||||
**super().get_template_context()
|
||||
}
|
||||
|
||||
|
||||
class Radio(AbstractInput):
|
||||
"""
|
||||
Component creates a set of radio buttons of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function.
|
||||
Input type: str
|
||||
"""
|
||||
|
||||
def __init__(self, choices, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
choices (List[str]): list of options to select from.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.choices = choices
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"choices": self.choices,
|
||||
**super().get_template_context()
|
||||
}
|
||||
|
||||
|
||||
class Dropdown(AbstractInput):
|
||||
"""
|
||||
Component creates a dropdown of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function.
|
||||
Input type: str
|
||||
"""
|
||||
|
||||
def __init__(self, choices, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
choices (List[str]): list of options to select from.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.choices = choices
|
||||
super().__init__(label)
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
"choices": self.choices,
|
||||
**super().get_template_context()
|
||||
}
|
||||
|
||||
|
||||
class Image(AbstractInput):
|
||||
"""
|
||||
Component creates an image upload box with editing capabilities. Provides numpy array of shape `(width, height, 3)` if `image_mode` is "RGB" as an argument to the wrapped function. Provides numpy array of shape `(width, height)` if `image_mode` is "L" as an argument to the wrapped function.
|
||||
Input type: numpy.array
|
||||
"""
|
||||
|
||||
def __init__(self, shape=None, image_mode='RGB', label=None):
|
||||
'''
|
||||
Parameters:
|
||||
shape (Tuple[int, int]): shape to crop and resize image to; if None, matches input image size.
|
||||
image_mode (str): "RGB" if color, or "L" if black and white.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
if shape is None:
|
||||
self.image_width, self.image_height = None, None
|
||||
else:
|
||||
self.image_width = shape[0]
|
||||
self.image_height = shape[1]
|
||||
self.image_mode = image_mode
|
||||
super().__init__(label)
|
||||
|
||||
def get_validation_inputs(self):
|
||||
return validation_data.BASE64_COLOR_IMAGES
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"image": {},
|
||||
}
|
||||
|
||||
def get_template_context(self):
|
||||
return {
|
||||
**super().get_template_context()
|
||||
}
|
||||
|
||||
def preprocess(self, inp):
|
||||
"""
|
||||
Default preprocessing method for is to convert the picture to black and white and resize to be 48x48
|
||||
"""
|
||||
im = processing_utils.decode_base64_to_image(inp)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
im = im.convert(self.image_mode)
|
||||
image_width, image_height = self.image_width, self.image_height
|
||||
if image_width is None:
|
||||
image_width = im.size[0]
|
||||
if image_height is None:
|
||||
image_height = im.size[1]
|
||||
im = processing_utils.resize_and_crop(
|
||||
im, (image_width, image_height))
|
||||
return np.array(im)
|
||||
|
||||
def process_example(self, example):
|
||||
if os.path.exists(example):
|
||||
return processing_utils.convert_file_to_base64(example)
|
||||
else:
|
||||
return example
|
||||
|
||||
|
||||
class Sketchpad(AbstractInput):
|
||||
"""
|
||||
Component creates a sketchpad for black and white illustration. Provides numpy array of shape `(width, height)` as an argument to the wrapped function.
|
||||
Input type: numpy.array
|
||||
"""
|
||||
|
||||
def __init__(self, shape=(28, 28), invert_colors=True,
|
||||
flatten=False, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
shape (Tuple[int, int]): shape to crop and resize image to.
|
||||
invert_colors (bool): whether to represent black as 1 and white as 0 in the numpy array.
|
||||
flatten (bool): whether to reshape the numpy array to a single dimension.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.image_width = shape[0]
|
||||
self.image_height = shape[1]
|
||||
self.invert_colors = invert_colors
|
||||
self.flatten = flatten
|
||||
super().__init__(label)
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"sketchpad": {},
|
||||
}
|
||||
|
||||
def preprocess(self, inp):
|
||||
"""
|
||||
Default preprocessing method for the SketchPad is to convert the sketch to black and white and resize 28x28
|
||||
"""
|
||||
im_transparent = processing_utils.decode_base64_to_image(inp)
|
||||
# Create a white background for the alpha channel
|
||||
im = PIL.Image.new("RGBA", im_transparent.size, "WHITE")
|
||||
im.paste(im_transparent, (0, 0), im_transparent)
|
||||
im = im.convert('L')
|
||||
if self.invert_colors:
|
||||
im = PIL.ImageOps.invert(im)
|
||||
im = im.resize((self.image_width, self.image_height))
|
||||
if self.flatten:
|
||||
array = np.array(im).flatten().reshape(
|
||||
1, self.image_width * self.image_height)
|
||||
else:
|
||||
array = np.array(im).flatten().reshape(
|
||||
1, self.image_width, self.image_height)
|
||||
return array
|
||||
|
||||
def process_example(self, example):
|
||||
return processing_utils.convert_file_to_base64(example)
|
||||
|
||||
|
||||
class Webcam(AbstractInput):
|
||||
"""
|
||||
Component creates a webcam for captured image input. Provides numpy array of shape `(width, height, 3)` as an argument to the wrapped function.
|
||||
Input type: numpy.array
|
||||
"""
|
||||
|
||||
def __init__(self, shape=(224, 224), label=None):
|
||||
'''
|
||||
Parameters:
|
||||
shape (Tuple[int, int]): shape to crop and resize image to.
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
self.image_width = shape[0]
|
||||
self.image_height = shape[1]
|
||||
self.num_channels = 3
|
||||
super().__init__(label)
|
||||
|
||||
def get_validation_inputs(self):
|
||||
return validation_data.BASE64_COLOR_IMAGES
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"webcam": {},
|
||||
}
|
||||
|
||||
def preprocess(self, inp):
|
||||
"""
|
||||
Default preprocessing method for is to convert the picture to black and white and resize to be 48x48
|
||||
"""
|
||||
im = processing_utils.decode_base64_to_image(inp)
|
||||
im = im.convert('RGB')
|
||||
im = processing_utils.resize_and_crop(
|
||||
im, (self.image_width, self.image_height))
|
||||
return np.array(im)
|
||||
|
||||
|
||||
class Microphone(AbstractInput):
|
||||
"""
|
||||
Component creates a microphone element for audio inputs. Provides numpy array of shape `(samples, 2)` as an argument to the wrapped function.
|
||||
Input type: numpy.array
|
||||
"""
|
||||
|
||||
def __init__(self, preprocessing=None, label=None):
|
||||
'''
|
||||
Parameters:
|
||||
preprocessing (Union[str, Callable]): preprocessing to apply to input
|
||||
label (str): component name in interface.
|
||||
'''
|
||||
super().__init__(label)
|
||||
if preprocessing is None or preprocessing == "mfcc":
|
||||
self.preprocessing = preprocessing
|
||||
else:
|
||||
raise ValueError(
|
||||
"unexpected value for preprocessing", preprocessing)
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
"microphone": {},
|
||||
}
|
||||
|
||||
def preprocess(self, inp):
|
||||
"""
|
||||
By default, no pre-processing is applied to a microphone input file
|
||||
"""
|
||||
file_obj = processing_utils.decode_base64_to_file(inp)
|
||||
if self.preprocessing == "mfcc":
|
||||
return processing_utils.generate_mfcc_features_from_audio_file(file_obj.name)
|
||||
_, signal = scipy.io.wavfile.read(file_obj.name)
|
||||
return signal
|
||||
|
||||
|
||||
# Automatically adds all shortcut implementations in AbstractInput into a dictionary.
|
||||
shortcuts = {}
|
||||
for cls in AbstractInput.__subclasses__():
|
||||
for shortcut, parameters in cls.get_shortcut_implementations().items():
|
||||
shortcuts[shortcut] = cls(**parameters)
|
@ -1,420 +0,0 @@
|
||||
"""
|
||||
This is the core file in the `gradio` package, and defines the Interface class, including methods for constructing the
|
||||
interface using the input and output types.
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
import traceback
|
||||
import webbrowser
|
||||
|
||||
import gradio.inputs
|
||||
import gradio.outputs
|
||||
from gradio import networking, strings
|
||||
from distutils.version import StrictVersion
|
||||
import pkg_resources
|
||||
import requests
|
||||
import random
|
||||
import time
|
||||
import inspect
|
||||
from IPython import get_ipython
|
||||
import sys
|
||||
import weakref
|
||||
import analytics
|
||||
|
||||
|
||||
PKG_VERSION_URL = "https://gradio.app/api/pkg-version"
|
||||
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
|
||||
analytics_url = 'https://api.gradio.app/'
|
||||
try:
|
||||
ip_address = requests.get('https://api.ipify.org').text
|
||||
except requests.ConnectionError:
|
||||
ip_address = "No internet connection"
|
||||
|
||||
|
||||
class Interface:
|
||||
"""
|
||||
Interfaces are created with Gradio using the `gradio.Interface()` function.
|
||||
"""
|
||||
instances = weakref.WeakSet()
|
||||
|
||||
def __init__(self, fn, inputs, outputs, saliency=None, verbose=False, examples=None,
|
||||
live=False, show_input=True, show_output=True,
|
||||
capture_session=False, title=None, description=None,
|
||||
thumbnail=None, server_port=None, server_name=networking.LOCALHOST_NAME,
|
||||
allow_screenshot=True):
|
||||
"""
|
||||
Parameters:
|
||||
fn (Callable): the function to wrap an interface around.
|
||||
inputs (Union[str, List[Union[str, AbstractInput]]]): a single Gradio input component, or list of Gradio input components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of input components should match the number of parameters in fn.
|
||||
outputs (Union[str, List[Union[str, AbstractOutput]]]): a single Gradio output component, or list of Gradio output components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of output components should match the number of values returned by fn.
|
||||
live (bool): whether the interface should automatically reload on change.
|
||||
capture_session (bool): if True, captures the default graph and session (needed for Tensorflow 1.x)
|
||||
title (str): a title for the interface; if provided, appears above the input and output components.
|
||||
description (str): a description for the interface; if provided, appears above the input and output components.
|
||||
examples (List[List[Any]]): sample inputs for the function; if provided, appears below the UI components and can be used to populate the interface. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component.
|
||||
"""
|
||||
def get_input_instance(iface):
|
||||
if isinstance(iface, str):
|
||||
return gradio.inputs.shortcuts[iface.lower()]
|
||||
elif isinstance(iface, gradio.inputs.AbstractInput):
|
||||
return iface
|
||||
else:
|
||||
raise ValueError("Input interface must be of type `str` or "
|
||||
"`AbstractInput`")
|
||||
|
||||
def get_output_instance(iface):
|
||||
if isinstance(iface, str):
|
||||
return gradio.outputs.shortcuts[iface.lower()]
|
||||
elif isinstance(iface, gradio.outputs.AbstractOutput):
|
||||
return iface
|
||||
else:
|
||||
raise ValueError(
|
||||
"Output interface must be of type `str` or "
|
||||
"`AbstractOutput`"
|
||||
)
|
||||
if isinstance(inputs, list):
|
||||
self.input_interfaces = [get_input_instance(i) for i in inputs]
|
||||
else:
|
||||
self.input_interfaces = [get_input_instance(inputs)]
|
||||
if isinstance(outputs, list):
|
||||
self.output_interfaces = [get_output_instance(i) for i in outputs]
|
||||
else:
|
||||
self.output_interfaces = [get_output_instance(outputs)]
|
||||
if not isinstance(fn, list):
|
||||
fn = [fn]
|
||||
self.output_interfaces *= len(fn)
|
||||
self.predict = fn
|
||||
self.verbose = verbose
|
||||
self.status = "OFF"
|
||||
self.saliency = saliency
|
||||
self.live = live
|
||||
self.show_input = show_input
|
||||
self.show_output = show_output
|
||||
self.flag_hash = random.getrandbits(32)
|
||||
self.capture_session = capture_session
|
||||
self.session = None
|
||||
self.server_name = server_name
|
||||
self.title = title
|
||||
self.description = description
|
||||
self.thumbnail = thumbnail
|
||||
self.examples = examples
|
||||
self.server_port = server_port
|
||||
self.simple_server = None
|
||||
self.allow_screenshot = allow_screenshot
|
||||
Interface.instances.add(self)
|
||||
|
||||
data = {'fn': fn,
|
||||
'inputs': inputs,
|
||||
'outputs': outputs,
|
||||
'saliency': saliency,
|
||||
'live': live,
|
||||
'capture_session': capture_session,
|
||||
'ip_address': ip_address
|
||||
}
|
||||
|
||||
if self.capture_session:
|
||||
try:
|
||||
import tensorflow as tf
|
||||
self.session = tf.get_default_graph(), \
|
||||
tf.keras.backend.get_session()
|
||||
except (ImportError, AttributeError): # If they are using TF >= 2.0 or don't have TF, just ignore this.
|
||||
pass
|
||||
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-initiated-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
|
||||
def get_config_file(self):
|
||||
config = {
|
||||
"input_interfaces": [
|
||||
(iface.__class__.__name__.lower(), iface.get_template_context())
|
||||
for iface in self.input_interfaces],
|
||||
"output_interfaces": [
|
||||
(iface.__class__.__name__.lower(), iface.get_template_context())
|
||||
for iface in self.output_interfaces],
|
||||
"function_count": len(self.predict),
|
||||
"live": self.live,
|
||||
"show_input": self.show_input,
|
||||
"show_output": self.show_output,
|
||||
"title": self.title,
|
||||
"description": self.description,
|
||||
"thumbnail": self.thumbnail,
|
||||
"allow_screenshot": self.allow_screenshot
|
||||
}
|
||||
try:
|
||||
param_names = inspect.getfullargspec(self.predict[0])[0]
|
||||
for iface, param in zip(config["input_interfaces"], param_names):
|
||||
if not iface[1]["label"]:
|
||||
iface[1]["label"] = param.replace("_", " ")
|
||||
for i, iface in enumerate(config["output_interfaces"]):
|
||||
ret_name = "Output " + str(i + 1) if len(config["output_interfaces"]) > 1 else "Output"
|
||||
if not iface[1]["label"]:
|
||||
iface[1]["label"] = ret_name
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
return config
|
||||
|
||||
def process(self, raw_input):
|
||||
processed_input = [input_interface.preprocess(
|
||||
raw_input[i]) for i, input_interface in
|
||||
enumerate(self.input_interfaces)]
|
||||
predictions = []
|
||||
durations = []
|
||||
for predict_fn in self.predict:
|
||||
start = time.time()
|
||||
if self.capture_session and not(self.session is None):
|
||||
graph, sess = self.session
|
||||
with graph.as_default():
|
||||
with sess.as_default():
|
||||
prediction = predict_fn(*processed_input)
|
||||
else:
|
||||
try:
|
||||
prediction = predict_fn(*processed_input)
|
||||
except ValueError as exception:
|
||||
if str(exception).endswith("is not an element of this "
|
||||
"graph."):
|
||||
raise ValueError("It looks like you might be using "
|
||||
"tensorflow < 2.0. Please "
|
||||
"pass capture_session=True in "
|
||||
"Interface to avoid the 'Tensor is "
|
||||
"not an element of this graph.' "
|
||||
"error.")
|
||||
else:
|
||||
raise exception
|
||||
duration = time.time() - start
|
||||
|
||||
if len(self.output_interfaces) == len(self.predict):
|
||||
prediction = [prediction]
|
||||
durations.append(duration)
|
||||
predictions.extend(prediction)
|
||||
processed_output = [output_interface.postprocess(
|
||||
predictions[i]) for i, output_interface in enumerate(self.output_interfaces)]
|
||||
return processed_output, durations
|
||||
|
||||
def validate(self):
|
||||
if self.validate_flag:
|
||||
if self.verbose:
|
||||
print("Interface already validated")
|
||||
return
|
||||
validation_inputs = self.input_interface.get_validation_inputs()
|
||||
n = len(validation_inputs)
|
||||
if n == 0:
|
||||
self.validate_flag = True
|
||||
if self.verbose:
|
||||
print(
|
||||
"No validation samples for this interface... skipping validation."
|
||||
)
|
||||
return
|
||||
for m, msg in enumerate(validation_inputs):
|
||||
if self.verbose:
|
||||
print(
|
||||
"Validating samples: {}/{} [".format(m+1, n)
|
||||
+ "=" * (m + 1)
|
||||
+ "." * (n - m - 1)
|
||||
+ "]",
|
||||
end="\r",
|
||||
)
|
||||
try:
|
||||
processed_input = self.input_interface.preprocess(msg)
|
||||
prediction = self.predict(processed_input)
|
||||
except Exception as e:
|
||||
data = {'error': e}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
if self.verbose:
|
||||
print("\n----------")
|
||||
print(
|
||||
"Validation failed, likely due to incompatible pre-processing and model input. See below:\n"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
break
|
||||
try:
|
||||
_ = self.output_interface.postprocess(prediction)
|
||||
except Exception as e:
|
||||
data = {'error': e}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
if self.verbose:
|
||||
print("\n----------")
|
||||
print(
|
||||
"Validation failed, likely due to incompatible model output and post-processing."
|
||||
"See below:\n"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
break
|
||||
else: # This means if a break was not explicitly called
|
||||
self.validate_flag = True
|
||||
if self.verbose:
|
||||
print("\n\nValidation passed successfully!")
|
||||
return
|
||||
raise RuntimeError("Validation did not pass")
|
||||
|
||||
def close(self):
|
||||
if self.simple_server and not(self.simple_server.fileno() == -1): # checks to see if server is running
|
||||
print("Closing Gradio server on port {}...".format(self.server_port))
|
||||
networking.close_server(self.simple_server)
|
||||
|
||||
def launch(self, inline=None, inbrowser=None, share=False, validate=True, debug=False):
|
||||
"""
|
||||
Parameters
|
||||
share (bool): whether to create a publicly shareable link from your computer for the interface.
|
||||
"""
|
||||
# if validate and not self.validate_flag:
|
||||
# self.validate()
|
||||
|
||||
output_directory = tempfile.mkdtemp()
|
||||
# Set up a port to serve the directory containing the static files with interface.
|
||||
server_port, httpd = networking.start_simple_server(self, output_directory, self.server_name,
|
||||
server_port=self.server_port)
|
||||
path_to_local_server = "http://{}:{}/".format(self.server_name, server_port)
|
||||
networking.build_template(output_directory)
|
||||
|
||||
self.server_port = server_port
|
||||
self.status = "RUNNING"
|
||||
self.simple_server = httpd
|
||||
|
||||
is_colab = False
|
||||
try: # Check if running interactively using ipython.
|
||||
from_ipynb = get_ipython()
|
||||
if "google.colab" in str(from_ipynb):
|
||||
is_colab = True
|
||||
except NameError:
|
||||
data = {'error': 'NameError in launch method'}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
pass
|
||||
|
||||
try:
|
||||
current_pkg_version = pkg_resources.require("gradio")[0].version
|
||||
latest_pkg_version = requests.get(url=PKG_VERSION_URL).json()["version"]
|
||||
if StrictVersion(latest_pkg_version) > StrictVersion(current_pkg_version):
|
||||
print("IMPORTANT: You are using gradio version {}, "
|
||||
"however version {} "
|
||||
"is available, please upgrade.".format(
|
||||
current_pkg_version, latest_pkg_version))
|
||||
print('--------')
|
||||
except: # TODO(abidlabs): don't catch all exceptions
|
||||
pass
|
||||
|
||||
if not is_colab:
|
||||
print(strings.en["RUNNING_LOCALLY"].format(path_to_local_server))
|
||||
else:
|
||||
if debug:
|
||||
print("Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. "
|
||||
"To turn off, set debug=False in launch().")
|
||||
else:
|
||||
print("Colab notebook detected. To show errors in colab notebook, set debug=True in launch()")
|
||||
|
||||
if share:
|
||||
try:
|
||||
share_url = networking.setup_tunnel(server_port)
|
||||
print("Running on External URL:", share_url)
|
||||
except RuntimeError:
|
||||
data = {'error': 'RuntimeError in launch method'}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
share_url = None
|
||||
if self.verbose:
|
||||
print(strings.en["NGROK_NO_INTERNET"])
|
||||
else:
|
||||
if (
|
||||
is_colab
|
||||
): # For a colab notebook, create a public link even if share is False.
|
||||
share_url = networking.setup_tunnel(server_port)
|
||||
print("Running on External URL:", share_url)
|
||||
if self.verbose:
|
||||
print(strings.en["COLAB_NO_LOCAL"])
|
||||
else: # If it's not a colab notebook and share=False, print a message telling them about the share option.
|
||||
if self.verbose:
|
||||
print(strings.en["PUBLIC_SHARE_TRUE"])
|
||||
share_url = None
|
||||
|
||||
if inline is None:
|
||||
try: # Check if running interactively using ipython.
|
||||
get_ipython()
|
||||
inline = True
|
||||
if inbrowser is None:
|
||||
inbrowser = False
|
||||
except NameError:
|
||||
inline = False
|
||||
if inbrowser is None:
|
||||
inbrowser = True
|
||||
else:
|
||||
if inbrowser is None:
|
||||
inbrowser = False
|
||||
|
||||
if inbrowser and not is_colab:
|
||||
webbrowser.open(
|
||||
path_to_local_server
|
||||
) # Open a browser tab with the interface.
|
||||
if inline:
|
||||
from IPython.display import IFrame, display
|
||||
|
||||
if (
|
||||
is_colab
|
||||
): # Embed the remote interface page if on google colab;
|
||||
# otherwise, embed the local page.
|
||||
print("Interface loading below...")
|
||||
while not networking.url_ok(share_url):
|
||||
time.sleep(1)
|
||||
display(IFrame(share_url, width=1000, height=500))
|
||||
else:
|
||||
display(IFrame(path_to_local_server, width=1000, height=500))
|
||||
|
||||
config = self.get_config_file()
|
||||
config["share_url"] = share_url
|
||||
|
||||
processed_examples = []
|
||||
if self.examples is not None:
|
||||
for example_set in self.examples:
|
||||
processed_set = []
|
||||
for iface, example in zip(self.input_interfaces, example_set):
|
||||
processed_set.append(iface.process_example(example))
|
||||
processed_examples.append(processed_set)
|
||||
config["examples"] = processed_examples
|
||||
|
||||
networking.set_config(config, output_directory)
|
||||
networking.set_meta_tags(output_directory, self.title, self.description, self.thumbnail)
|
||||
|
||||
if debug:
|
||||
while True:
|
||||
sys.stdout.flush()
|
||||
time.sleep(0.1)
|
||||
|
||||
launch_method = 'browser' if inbrowser else 'inline'
|
||||
data = {'launch_method': launch_method,
|
||||
'is_google_colab': is_colab,
|
||||
'is_sharing_on': share,
|
||||
'share_url': share_url,
|
||||
'ip_address': ip_address
|
||||
}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-launched-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
return httpd, path_to_local_server, share_url
|
||||
|
||||
@classmethod
|
||||
def get_instances(cls):
|
||||
return list(Interface.instances) # Returns list of all current instances.
|
||||
|
||||
|
||||
def reset_all():
|
||||
for io in Interface.get_instances():
|
||||
io.close()
|
@ -1,287 +0,0 @@
|
||||
"""
|
||||
Defines helper methods useful for setting up ports, launching servers, and handling `ngrok`
|
||||
"""
|
||||
|
||||
import os
|
||||
import socket
|
||||
import threading
|
||||
from http.server import HTTPServer as BaseHTTPServer, SimpleHTTPRequestHandler
|
||||
import pkg_resources
|
||||
from distutils import dir_util
|
||||
from gradio import inputs, outputs
|
||||
import json
|
||||
from gradio.tunneling import create_tunnel
|
||||
import urllib.request
|
||||
from shutil import copyfile
|
||||
import requests
|
||||
import sys
|
||||
import analytics
|
||||
|
||||
|
||||
INITIAL_PORT_VALUE = int(os.getenv(
|
||||
'GRADIO_SERVER_PORT', "7860")) # The http server will try to open on port 7860. If not available, 7861, 7862, etc.
|
||||
TRY_NUM_PORTS = int(os.getenv(
|
||||
'GRADIO_NUM_PORTS', "100")) # Number of ports to try before giving up and throwing an exception.
|
||||
LOCALHOST_NAME = os.getenv(
|
||||
'GRADIO_SERVER_NAME', "127.0.0.1")
|
||||
GRADIO_API_SERVER = "https://api.gradio.app/v1/tunnel-request"
|
||||
|
||||
STATIC_TEMPLATE_LIB = pkg_resources.resource_filename("gradio", "templates/")
|
||||
STATIC_PATH_LIB = pkg_resources.resource_filename("gradio", "static/")
|
||||
STATIC_PATH_TEMP = "static/"
|
||||
TEMPLATE_TEMP = "index.html"
|
||||
BASE_JS_FILE = "static/js/all_io.js"
|
||||
CONFIG_FILE = "static/config.json"
|
||||
|
||||
ASSOCIATION_PATH_IN_STATIC = "static/apple-app-site-association"
|
||||
ASSOCIATION_PATH_IN_ROOT = "apple-app-site-association"
|
||||
|
||||
FLAGGING_DIRECTORY = 'static/flagged/'
|
||||
FLAGGING_FILENAME = 'data.txt'
|
||||
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
|
||||
analytics_url = 'https://api.gradio.app/'
|
||||
|
||||
|
||||
def build_template(temp_dir):
|
||||
"""
|
||||
Create HTML file with supporting JS and CSS files in a given directory.
|
||||
:param temp_dir: string with path to temp directory in which the html file should be built
|
||||
"""
|
||||
dir_util.copy_tree(STATIC_TEMPLATE_LIB, temp_dir)
|
||||
dir_util.copy_tree(STATIC_PATH_LIB, os.path.join(
|
||||
temp_dir, STATIC_PATH_TEMP))
|
||||
|
||||
# Move association file to root of temporary directory.
|
||||
copyfile(os.path.join(temp_dir, ASSOCIATION_PATH_IN_STATIC),
|
||||
os.path.join(temp_dir, ASSOCIATION_PATH_IN_ROOT))
|
||||
|
||||
|
||||
def render_template_with_tags(template_path, context):
|
||||
"""
|
||||
Combines the given template with a given context dictionary by replacing all of the occurrences of tags (enclosed
|
||||
in double curly braces) with corresponding values.
|
||||
:param template_path: a string with the path to the template file
|
||||
:param context: a dictionary whose string keys are the tags to replace and whose string values are the replacements.
|
||||
"""
|
||||
with open(template_path) as fin:
|
||||
old_lines = fin.readlines()
|
||||
new_lines = render_string_or_list_with_tags(old_lines, context)
|
||||
with open(template_path, "w") as fout:
|
||||
for line in new_lines:
|
||||
fout.write(line)
|
||||
|
||||
|
||||
def render_string_or_list_with_tags(old_lines, context):
|
||||
# Handle string case
|
||||
if isinstance(old_lines, str):
|
||||
for key, value in context.items():
|
||||
old_lines = old_lines.replace(r"{{" + key + r"}}", str(value))
|
||||
return old_lines
|
||||
|
||||
# Handle list case
|
||||
new_lines = []
|
||||
for line in old_lines:
|
||||
for key, value in context.items():
|
||||
line = line.replace(r"{{" + key + r"}}", str(value))
|
||||
new_lines.append(line)
|
||||
return new_lines
|
||||
|
||||
|
||||
def set_meta_tags(temp_dir, title, description, thumbnail):
|
||||
title = "Gradio" if title is None else title
|
||||
description = "Easy-to-use UI for your machine learning model" if description is None else description
|
||||
thumbnail = "https://gradio.app/static/img/logo_only.png" if thumbnail is None else thumbnail
|
||||
|
||||
index_file = os.path.join(temp_dir, TEMPLATE_TEMP)
|
||||
render_template_with_tags(index_file, {
|
||||
"title": title,
|
||||
"description": description,
|
||||
"thumbnail": thumbnail
|
||||
})
|
||||
|
||||
|
||||
def set_config(config, temp_dir):
|
||||
config_file = os.path.join(temp_dir, CONFIG_FILE)
|
||||
with open(config_file, "w") as output:
|
||||
json.dump(config, output)
|
||||
|
||||
|
||||
def get_first_available_port(initial, final):
|
||||
"""
|
||||
Gets the first open port in a specified range of port numbers
|
||||
:param initial: the initial value in the range of port numbers
|
||||
:param final: final (exclusive) value in the range of port numbers, should be greater than `initial`
|
||||
:return:
|
||||
"""
|
||||
for port in range(initial, final):
|
||||
try:
|
||||
s = socket.socket() # create a socket object
|
||||
s.bind((LOCALHOST_NAME, port)) # Bind to the port
|
||||
s.close()
|
||||
return port
|
||||
except OSError:
|
||||
pass
|
||||
raise OSError(
|
||||
"All ports from {} to {} are in use. Please close a port.".format(
|
||||
initial, final
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def send_prediction_analytics(interface):
|
||||
data = {'title': interface.title,
|
||||
'description': interface.description,
|
||||
'thumbnail': interface.thumbnail,
|
||||
'input_interface': interface.input_interfaces,
|
||||
'output_interface': interface.output_interfaces,
|
||||
}
|
||||
print(data)
|
||||
try:
|
||||
requests.post(
|
||||
analytics_url + 'gradio-prediction-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
|
||||
|
||||
def serve_files_in_background(interface, port, directory_to_serve=None, server_name=LOCALHOST_NAME):
|
||||
class HTTPHandler(SimpleHTTPRequestHandler):
|
||||
"""This handler uses server.base_path instead of always using os.getcwd()"""
|
||||
def _set_headers(self):
|
||||
self.send_response(200)
|
||||
self.send_header("Content-type", "application/json")
|
||||
self.end_headers()
|
||||
|
||||
def translate_path(self, path):
|
||||
path = SimpleHTTPRequestHandler.translate_path(self, path)
|
||||
relpath = os.path.relpath(path, os.getcwd())
|
||||
fullpath = os.path.join(self.server.base_path, relpath)
|
||||
return fullpath
|
||||
|
||||
def log_message(self, format, *args):
|
||||
return
|
||||
|
||||
def do_POST(self):
|
||||
# Read body of the request.
|
||||
if self.path == "/api/predict/":
|
||||
# Make the prediction.
|
||||
self._set_headers()
|
||||
data_string = self.rfile.read(
|
||||
int(self.headers["Content-Length"]))
|
||||
msg = json.loads(data_string)
|
||||
raw_input = msg["data"]
|
||||
prediction, durations = interface.process(raw_input)
|
||||
|
||||
output = {"data": prediction, "durations": durations}
|
||||
if interface.saliency is not None:
|
||||
saliency = interface.saliency(raw_input, prediction)
|
||||
output['saliency'] = saliency.tolist()
|
||||
# if interface.always_flag:
|
||||
# msg = json.loads(data_string)
|
||||
# flag_dir = os.path.join(FLAGGING_DIRECTORY, str(interface.hash))
|
||||
# os.makedirs(flag_dir, exist_ok=True)
|
||||
# output_flag = {'input': interface.input_interface.rebuild_flagged(flag_dir, msg['data']),
|
||||
# 'output': interface.output_interface.rebuild_flagged(flag_dir, processed_output),
|
||||
# }
|
||||
# with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
|
||||
# f.write(json.dumps(output_flag))
|
||||
# f.write("\n")
|
||||
|
||||
self.wfile.write(json.dumps(output).encode())
|
||||
|
||||
analytics_thread = threading.Thread(
|
||||
target=send_prediction_analytics, args=[interface])
|
||||
analytics_thread.start()
|
||||
|
||||
elif self.path == "/api/flag/":
|
||||
self._set_headers()
|
||||
data_string = self.rfile.read(
|
||||
int(self.headers["Content-Length"]))
|
||||
msg = json.loads(data_string)
|
||||
flag_dir = os.path.join(FLAGGING_DIRECTORY,
|
||||
str(interface.flag_hash))
|
||||
os.makedirs(flag_dir, exist_ok=True)
|
||||
output = {'inputs': [interface.input_interfaces[
|
||||
i].rebuild_flagged(
|
||||
flag_dir, msg['data']['input_data']) for i
|
||||
in range(len(interface.input_interfaces))],
|
||||
'outputs': [interface.output_interfaces[
|
||||
i].rebuild_flagged(
|
||||
flag_dir, msg['data']['output_data']) for i
|
||||
in range(len(interface.output_interfaces))],
|
||||
'message': msg['data']['message']}
|
||||
|
||||
with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
|
||||
f.write(json.dumps(output))
|
||||
f.write("\n")
|
||||
|
||||
else:
|
||||
self.send_error(404, 'Path not found: {}'.format(self.path))
|
||||
|
||||
class HTTPServer(BaseHTTPServer):
|
||||
"""The main server, you pass in base_path which is the path you want to serve requests from"""
|
||||
|
||||
def __init__(self, base_path, server_address, RequestHandlerClass=HTTPHandler):
|
||||
self.base_path = base_path
|
||||
BaseHTTPServer.__init__(self, server_address, RequestHandlerClass)
|
||||
|
||||
httpd = HTTPServer(directory_to_serve, (server_name, port))
|
||||
|
||||
# Now loop forever
|
||||
def serve_forever():
|
||||
try:
|
||||
while True:
|
||||
sys.stdout.flush()
|
||||
httpd.serve_forever()
|
||||
except (KeyboardInterrupt, OSError):
|
||||
httpd.shutdown()
|
||||
httpd.server_close()
|
||||
|
||||
thread = threading.Thread(target=serve_forever, daemon=False)
|
||||
thread.start()
|
||||
|
||||
return httpd
|
||||
|
||||
|
||||
def start_simple_server(interface, directory_to_serve=None, server_name=None, server_port=None):
|
||||
if server_port is None:
|
||||
server_port = INITIAL_PORT_VALUE
|
||||
port = get_first_available_port(
|
||||
server_port, server_port + TRY_NUM_PORTS
|
||||
)
|
||||
httpd = serve_files_in_background(interface, port, directory_to_serve, server_name)
|
||||
return port, httpd
|
||||
|
||||
|
||||
def close_server(server):
|
||||
server.server_close()
|
||||
|
||||
|
||||
def url_request(url):
|
||||
try:
|
||||
req = urllib.request.Request(
|
||||
url=url, headers={"content-type": "application/json"}
|
||||
)
|
||||
res = urllib.request.urlopen(req, timeout=10)
|
||||
return res
|
||||
except Exception as e:
|
||||
raise RuntimeError(str(e))
|
||||
|
||||
|
||||
def setup_tunnel(local_server_port):
|
||||
response = url_request(GRADIO_API_SERVER)
|
||||
if response and response.code == 200:
|
||||
try:
|
||||
payload = json.loads(response.read().decode("utf-8"))[0]
|
||||
return create_tunnel(payload, LOCALHOST_NAME, local_server_port)
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(str(e))
|
||||
|
||||
|
||||
def url_ok(url):
|
||||
try:
|
||||
r = requests.head(url)
|
||||
return r.status_code == 200
|
||||
except ConnectionError:
|
||||
return False
|
@ -1,25 +0,0 @@
|
||||
try:
|
||||
from setuptools import setup
|
||||
except ImportError:
|
||||
from distutils.core import setup
|
||||
|
||||
setup(
|
||||
name='gradio',
|
||||
version='1.0.2',
|
||||
include_package_data=True,
|
||||
description='Python library for easily interacting with trained machine learning models',
|
||||
author='Abubakar Abid',
|
||||
author_email='a12d@stanford.edu',
|
||||
url='https://github.com/gradio-app/gradio-UI',
|
||||
packages=['gradio'],
|
||||
keywords=['machine learning', 'visualization', 'reproducibility'],
|
||||
install_requires=[
|
||||
'numpy',
|
||||
'requests',
|
||||
'paramiko',
|
||||
'scipy',
|
||||
'IPython',
|
||||
'scikit-image',
|
||||
'analytics-python',
|
||||
],
|
||||
)
|
@ -21,7 +21,6 @@ import weakref
|
||||
import analytics
|
||||
import os
|
||||
|
||||
|
||||
PKG_VERSION_URL = "https://gradio.app/api/pkg-version"
|
||||
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
|
||||
analytics_url = 'https://api.gradio.app/'
|
||||
@ -48,7 +47,7 @@ class Interface:
|
||||
def __init__(self, fn, inputs, outputs, verbose=False, examples=None,
|
||||
live=False, show_input=True, show_output=True,
|
||||
capture_session=False, title=None, description=None,
|
||||
thumbnail=None, server_port=None, server_name=networking.LOCALHOST_NAME,
|
||||
thumbnail=None, server_port=None, server_name=networking.LOCALHOST_NAME,
|
||||
allow_screenshot=True, allow_flagging=True,
|
||||
flagging_dir="flagged"):
|
||||
"""
|
||||
@ -69,6 +68,7 @@ class Interface:
|
||||
allow_flagging (bool): if False, users will not see a button to flag an input and output.
|
||||
flagging_dir (str): what to name the dir where flagged data is stored.
|
||||
"""
|
||||
|
||||
def get_input_instance(iface):
|
||||
if isinstance(iface, str):
|
||||
shortcut = InputComponent.get_all_shortcut_implementations()[iface]
|
||||
@ -90,6 +90,7 @@ class Interface:
|
||||
"Output interface must be of type `str` or "
|
||||
"`OutputComponent`"
|
||||
)
|
||||
|
||||
if isinstance(inputs, list):
|
||||
self.input_interfaces = [get_input_instance(i) for i in inputs]
|
||||
else:
|
||||
@ -135,7 +136,7 @@ class Interface:
|
||||
try:
|
||||
import tensorflow as tf
|
||||
self.session = tf.get_default_graph(), \
|
||||
tf.keras.backend.get_session()
|
||||
tf.keras.backend.get_session()
|
||||
except (ImportError, AttributeError):
|
||||
# If they are using TF >= 2.0 or don't have TF,
|
||||
# just ignore this.
|
||||
@ -151,7 +152,7 @@ class Interface:
|
||||
"_{}".format(index)):
|
||||
index += 1
|
||||
self.flagging_dir = self.flagging_dir + "/" + dir_name + \
|
||||
"_{}".format(index)
|
||||
"_{}".format(index)
|
||||
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-initiated-analytics/',
|
||||
@ -188,8 +189,8 @@ class Interface:
|
||||
iface[1]["label"] = ret_name
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
return config
|
||||
|
||||
return config
|
||||
|
||||
def process(self, raw_input):
|
||||
"""
|
||||
@ -208,7 +209,7 @@ class Interface:
|
||||
durations = []
|
||||
for predict_fn in self.predict:
|
||||
start = time.time()
|
||||
if self.capture_session and not(self.session is None):
|
||||
if self.capture_session and not (self.session is None):
|
||||
graph, sess = self.session
|
||||
with graph.as_default():
|
||||
with sess.as_default():
|
||||
@ -238,10 +239,19 @@ class Interface:
|
||||
return processed_output, durations
|
||||
|
||||
def close(self):
|
||||
if self.simple_server and not(self.simple_server.fileno() == -1): # checks to see if server is running
|
||||
if self.simple_server and not (self.simple_server.fileno() == -1): # checks to see if server is running
|
||||
print("Closing Gradio server on port {}...".format(self.server_port))
|
||||
networking.close_server(self.simple_server)
|
||||
|
||||
def run_until_interrupted(self, thread, path_to_local_server):
|
||||
try:
|
||||
while 1:
|
||||
pass
|
||||
except (KeyboardInterrupt, OSError):
|
||||
print("Keyboard interruption in main thread... closing server.")
|
||||
thread.keep_running = False
|
||||
networking.url_ok(path_to_local_server)
|
||||
|
||||
def launch(self, inline=None, inbrowser=None, share=False, debug=False):
|
||||
"""
|
||||
Parameters
|
||||
@ -258,11 +268,10 @@ class Interface:
|
||||
path_to_local_server (str): Locally accessible link
|
||||
share_url (str): Publicly accessible link (if share=True)
|
||||
"""
|
||||
|
||||
output_directory = tempfile.mkdtemp()
|
||||
# Set up a port to serve the directory containing the static files with interface.
|
||||
server_port, httpd = networking.start_simple_server(self, output_directory, self.server_name,
|
||||
server_port=self.server_port)
|
||||
server_port, httpd, thread = networking.start_simple_server(
|
||||
self, output_directory, self.server_name, server_port=self.server_port)
|
||||
path_to_local_server = "http://{}:{}/".format(self.server_name, server_port)
|
||||
networking.build_template(output_directory)
|
||||
|
||||
@ -277,7 +286,7 @@ class Interface:
|
||||
print("IMPORTANT: You are using gradio version {}, "
|
||||
"however version {} "
|
||||
"is available, please upgrade.".format(
|
||||
current_pkg_version, latest_pkg_version))
|
||||
current_pkg_version, latest_pkg_version))
|
||||
print('--------')
|
||||
except: # TODO(abidlabs): don't catch all exceptions
|
||||
pass
|
||||
@ -370,6 +379,11 @@ class Interface:
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
|
||||
is_in_interactive_mode = bool(getattr(sys, 'ps1', sys.flags.interactive))
|
||||
if not is_in_interactive_mode:
|
||||
self.run_until_interrupted(thread, path_to_local_server)
|
||||
|
||||
return httpd, path_to_local_server, share_url
|
||||
|
||||
|
||||
|
@ -9,6 +9,7 @@ from http.server import HTTPServer as BaseHTTPServer, SimpleHTTPRequestHandler
|
||||
import pkg_resources
|
||||
from distutils import dir_util
|
||||
from gradio import inputs, outputs
|
||||
import time
|
||||
import json
|
||||
from gradio.tunneling import create_tunnel
|
||||
import urllib.request
|
||||
@ -221,22 +222,21 @@ def serve_files_in_background(interface, port, directory_to_serve=None, server_n
|
||||
self.base_path = base_path
|
||||
BaseHTTPServer.__init__(self, server_address, RequestHandlerClass)
|
||||
|
||||
class QuittableHTTPThread(threading.Thread):
|
||||
def __init__(self, httpd):
|
||||
super().__init__(daemon=False)
|
||||
self.httpd = httpd
|
||||
self.keep_running =True
|
||||
|
||||
def run(self):
|
||||
while self.keep_running:
|
||||
self.httpd.handle_request()
|
||||
|
||||
httpd = HTTPServer(directory_to_serve, (server_name, port))
|
||||
|
||||
# Now loop forever
|
||||
def serve_forever():
|
||||
try:
|
||||
while True:
|
||||
sys.stdout.flush()
|
||||
httpd.serve_forever()
|
||||
except (KeyboardInterrupt, OSError):
|
||||
httpd.shutdown()
|
||||
httpd.server_close()
|
||||
|
||||
thread = threading.Thread(target=serve_forever, daemon=False)
|
||||
thread = QuittableHTTPThread(httpd=httpd)
|
||||
thread.start()
|
||||
|
||||
return httpd
|
||||
return httpd, thread
|
||||
|
||||
|
||||
def start_simple_server(interface, directory_to_serve=None, server_name=None, server_port=None):
|
||||
@ -245,8 +245,8 @@ def start_simple_server(interface, directory_to_serve=None, server_name=None, se
|
||||
port = get_first_available_port(
|
||||
server_port, server_port + TRY_NUM_PORTS
|
||||
)
|
||||
httpd = serve_files_in_background(interface, port, directory_to_serve, server_name)
|
||||
return port, httpd
|
||||
httpd, thread = serve_files_in_background(interface, port, directory_to_serve, server_name)
|
||||
return port, httpd, thread
|
||||
|
||||
|
||||
def close_server(server):
|
||||
|
Loading…
Reference in New Issue
Block a user