mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-18 10:44:33 +08:00
Fixes chatbot_dialogpt demo (#4238)
* demo fix * changelog * fix * demo --------- Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
This commit is contained in:
parent
c4e96d9f01
commit
7664bb57f5
@ -33,6 +33,7 @@ No changes to highlight.
|
||||
- Fix "TypeError: issubclass() arg 1 must be a class" When use Optional[Types] by [@lingfengchencn](https://github.com/lingfengchencn) in [PR 4200](https://github.com/gradio-app/gradio/pull/4200).
|
||||
- Ensure cancelling functions work correctly by [@pngwn](https://github.com/pngwn) in [PR 4225](https://github.com/gradio-app/gradio/pull/4225)
|
||||
- Fixes a bug with typing.get_type_hints() on Python 3.9 by [@abidlabs](https://github.com/abidlabs) in [PR 4228](https://github.com/gradio-app/gradio/pull/4228).
|
||||
- Fix `chatbot_dialogpt` demo by [@dawoodkhan82](https://github.com/dawoodkhan82) in [PR 4238](https://github.com/gradio-app/gradio/pull/4238).
|
||||
|
||||
## Other Changes:
|
||||
|
||||
|
@ -1 +1 @@
|
||||
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_dialogpt"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import AutoModelForCausalLM, AutoTokenizer\n", "import torch\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "model = AutoModelForCausalLM.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "\n", "def user(message, history):\n", " return \"\", history + [[message, None]]\n", "\n", "\n", "# bot_message = random.choice([\"Yes\", \"No\"])\n", "# history[-1][1] = bot_message\n", "# time.sleep(1)\n", "# return history\n", "\n", "# def predict(input, history=[]):\n", "# # tokenize the new input sentence\n", "\n", "def bot(history):\n", " user_message = history[-1][0]\n", " new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')\n", "\n", " # append the new user input tokens to the chat history\n", " bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)\n", "\n", " # generate a response \n", " history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()\n", "\n", " # convert the tokens to text, and then split the responses into lines\n", " response = tokenizer.decode(history[0]).split(\"<|endoftext|>\")\n", " response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list\n", " return history\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot()\n", " msg = gr.Textbox()\n", " clear = gr.Button(\"Clear\")\n", "\n", " msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " clear.click(lambda: None, None, chatbot, queue=False)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
||||
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_dialogpt"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import AutoModelForCausalLM, AutoTokenizer\n", "import torch\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "model = AutoModelForCausalLM.from_pretrained(\"microsoft/DialoGPT-medium\")\n", "\n", "\n", "def user(message, history):\n", " return \"\", history + [[message, None]]\n", "\n", "\n", "def bot(history):\n", " user_message = history[-1][0]\n", " new_user_input_ids = tokenizer.encode(\n", " user_message + tokenizer.eos_token, return_tensors=\"pt\"\n", " )\n", "\n", " # append the new user input tokens to the chat history\n", " bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)\n", "\n", " # generate a response\n", " response = model.generate(\n", " bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id\n", " ).tolist()\n", "\n", " # convert the tokens to text, and then split the responses into lines\n", " response = tokenizer.decode(response[0]).split(\"<|endoftext|>\")\n", " response = [\n", " (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)\n", " ] # convert to tuples of list\n", " history[-1] = response[0]\n", " return history\n", "\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot()\n", " msg = gr.Textbox()\n", " clear = gr.Button(\"Clear\")\n", "\n", " msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " clear.click(lambda: None, None, chatbot, queue=False)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
@ -5,33 +5,34 @@ import torch
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
||||
|
||||
|
||||
def user(message, history):
|
||||
return "", history + [[message, None]]
|
||||
|
||||
|
||||
# bot_message = random.choice(["Yes", "No"])
|
||||
# history[-1][1] = bot_message
|
||||
# time.sleep(1)
|
||||
# return history
|
||||
|
||||
# def predict(input, history=[]):
|
||||
# # tokenize the new input sentence
|
||||
|
||||
def bot(history):
|
||||
user_message = history[-1][0]
|
||||
new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
|
||||
new_user_input_ids = tokenizer.encode(
|
||||
user_message + tokenizer.eos_token, return_tensors="pt"
|
||||
)
|
||||
|
||||
# append the new user input tokens to the chat history
|
||||
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
||||
bot_input_ids = torch.cat([torch.LongTensor([]), new_user_input_ids], dim=-1)
|
||||
|
||||
# generate a response
|
||||
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
|
||||
# generate a response
|
||||
response = model.generate(
|
||||
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id
|
||||
).tolist()
|
||||
|
||||
# convert the tokens to text, and then split the responses into lines
|
||||
response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
||||
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
||||
response = tokenizer.decode(response[0]).split("<|endoftext|>")
|
||||
response = [
|
||||
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
|
||||
] # convert to tuples of list
|
||||
history[-1] = response[0]
|
||||
return history
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
chatbot = gr.Chatbot()
|
||||
msg = gr.Textbox()
|
||||
|
Loading…
Reference in New Issue
Block a user