mirror of
https://github.com/gradio-app/gradio.git
synced 2025-03-31 12:20:26 +08:00
Small fixes for multiple demos compatible with 3.0 (#1257)
* add required param but None * import torch req, add chunk_length_s import torch requirement for transformers enable inference for longer audio files * fix compononte initialization * input number is float, force int to multipy string * no need for Templates, fix class init * expects array * add requirements.txt for demo * update with cleaner syntax * add sample csv to fraud demo * adapt to new syntax * temp fix for Slider arguments * add dep to requirements * remove gr.Markdown from Interface init * fix default value param name * upgrade deepspeech, download models onstart * use path resolution consistent with other demos * remove redundant demo * add example to interface * fixed plotting issues * plots * deprecated carousel Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
This commit is contained in:
parent
63d0a28c08
commit
73e98ddf15
@ -1,3 +1,5 @@
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
@ -28,8 +30,8 @@ with demo:
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
speed = gr.Slider(25, min=1, max=30, label="Speed")
|
||||
angle = gr.Slider(45, min=0, max=90, label="Angle")
|
||||
speed = gr.Slider(25, minimum=1, maximum=30, label="Speed")
|
||||
angle = gr.Slider(45, minimum=0, maximum=90, label="Angle")
|
||||
output = gr.Image(type="plot")
|
||||
btn = gr.Button("Run")
|
||||
btn.click(plot, [speed, angle], output)
|
||||
|
@ -40,9 +40,6 @@ with gr.Blocks() as demo:
|
||||
gr.Dataframe(
|
||||
interactive=True, headers=["One", "Two", "Three", "Four"], col_count=4
|
||||
)
|
||||
# layout components are static only
|
||||
# carousel doesn't work like other components
|
||||
# carousel = gr.Carousel()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
2
demo/blocks_speech_text_length/requirements.txt
Normal file
2
demo/blocks_speech_text_length/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
torch
|
||||
transformers
|
@ -1,18 +1,18 @@
|
||||
# from transformers import pipeline
|
||||
from transformers import pipeline
|
||||
|
||||
import gradio as gr
|
||||
|
||||
# asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
||||
# classifier = pipeline("text-classification")
|
||||
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
||||
classifier = pipeline("text-classification")
|
||||
|
||||
|
||||
# def speech_to_text(speech):
|
||||
# text = asr(speech)["text"]
|
||||
# return text
|
||||
def speech_to_text(speech):
|
||||
text = asr(speech)["text"]
|
||||
return text
|
||||
|
||||
|
||||
# def text_to_sentiment(text):
|
||||
# return classifier(text)[0]["label"]
|
||||
def text_to_sentiment(text):
|
||||
return classifier(text)[0]["label"]
|
||||
|
||||
|
||||
demo = gr.Blocks()
|
||||
@ -25,8 +25,8 @@ with demo:
|
||||
b1 = gr.Button("Recognize Speech")
|
||||
b2 = gr.Button("Classify Sentiment")
|
||||
|
||||
# b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
||||
# b2.click(text_to_sentiment, inputs=text, outputs=label)
|
||||
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
||||
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -1,12 +1,12 @@
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def greet(name: str, repeat: int):
|
||||
return "Hello " + name * repeat + "!!"
|
||||
def greet(name: str, repeat: float):
|
||||
return "Hello " + name * int(repeat) + "!!"
|
||||
|
||||
|
||||
demo = gr.Interface(
|
||||
fn=greet, inputs=[gr.Textbox(lines=2, max_lines=4), gr.Number()], outputs=gr.component("textarea")
|
||||
fn=greet, inputs=[gr.Textbox(lines=2, max_lines=4), gr.Number()], outputs="textarea"
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -7,7 +7,7 @@ def snap(image):
|
||||
return np.flipud(image)
|
||||
|
||||
|
||||
demo = gr.Interface(snap, gr.component("webcam"), gr.component("image"))
|
||||
demo = gr.Interface(snap, "webcam", "image")
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -5,12 +5,12 @@ import time
|
||||
|
||||
def xray_model(diseases, img):
|
||||
time.sleep(4)
|
||||
return {disease: random.random() for disease in diseases}
|
||||
return [{disease: random.random() for disease in diseases}]
|
||||
|
||||
|
||||
def ct_model(diseases, img):
|
||||
time.sleep(3)
|
||||
return {disease: 0.1 for disease in diseases}
|
||||
return [{disease: 0.1 for disease in diseases}]
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
|
@ -1 +0,0 @@
|
||||
fpdf
|
@ -1,49 +0,0 @@
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
from fpdf import FPDF
|
||||
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def disease_report(img, scan_for, generate_report):
|
||||
results = []
|
||||
for i, mode in enumerate(["Red", "Green", "Blue"]):
|
||||
color_filter = np.array([0, 0, 0])
|
||||
color_filter[i] = 1
|
||||
results.append([mode, img * color_filter])
|
||||
tmp_dir = tempfile.gettempdir()
|
||||
report = os.path.join(tmp_dir, "report.pdf")
|
||||
if generate_report:
|
||||
pdf = FPDF()
|
||||
pdf.add_page()
|
||||
pdf.set_font("Arial", size=15)
|
||||
pdf.cell(200, 10, txt="Disease Report", ln=1, align="C")
|
||||
pdf.cell(200, 10, txt="A Gradio Demo.", ln=2, align="C")
|
||||
pdf.output(report)
|
||||
return results, report if generate_report else None
|
||||
|
||||
|
||||
demo = gr.Interface(
|
||||
disease_report,
|
||||
[
|
||||
"image",
|
||||
gr.CheckboxGroup(
|
||||
["Cancer", "Rash", "Heart Failure", "Stroke", "Diabetes", "Pneumonia"]
|
||||
),
|
||||
"checkbox",
|
||||
],
|
||||
[
|
||||
gr.Carousel(["text", "image"], label="Disease"),
|
||||
gr.File(label="Report"),
|
||||
],
|
||||
title="Disease Report",
|
||||
description="Upload an Xray and select the diseases to scan for.",
|
||||
theme="grass",
|
||||
flagging_options=["good", "bad", "etc"],
|
||||
allow_flagging="auto",
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
Binary file not shown.
Before Width: | Height: | Size: 528 KiB |
@ -1,43 +0,0 @@
|
||||
# This demo needs to be run from the repo folder.
|
||||
# python demo/fake_gan/run.py
|
||||
import random
|
||||
import time
|
||||
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def fake_gan(*args):
|
||||
time.sleep(1)
|
||||
image = random.choice(
|
||||
[
|
||||
"https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
|
||||
"https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
|
||||
"https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
|
||||
"https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
|
||||
"https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80",
|
||||
]
|
||||
)
|
||||
return image
|
||||
|
||||
|
||||
demo = gr.Interface(
|
||||
fn=fake_gan,
|
||||
inputs=[
|
||||
gr.Image(label="Initial Image (optional)"),
|
||||
gr.Markdown("**Parameters**"),
|
||||
gr.Slider(25, minimum=0, maximum=50, label="TV_scale (for smoothness)"),
|
||||
gr.Slider(25, minimum=0, maximum=50, label="Range_Scale (out of range RBG)"),
|
||||
gr.Number(label="Respacing"),
|
||||
gr.Markdown("**Parameters Two**"),
|
||||
gr.Slider(25, minimum=0, maximum=50, label="Range_Scale (out of range RBG)"),
|
||||
gr.Number(label="Respacing"),
|
||||
gr.Markdown("**Parameters Three**"),
|
||||
gr.Textbox(label="Respacing"),
|
||||
],
|
||||
outputs=gr.Image(label="Generated Image"),
|
||||
title="FD-GAN",
|
||||
description="This is a fake demo of a GAN. In reality, the images are randomly chosen from Unsplash.",
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
@ -1 +0,0 @@
|
||||
matplotlib
|
@ -1,38 +0,0 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def plot_forecast(final_year, companies, noise, show_legend, point_style):
|
||||
start_year = 2020
|
||||
x = np.arange(start_year, final_year + 1)
|
||||
year_count = x.shape[0]
|
||||
plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style]
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
for i, company in enumerate(companies):
|
||||
series = np.arange(0, year_count, dtype=float)
|
||||
series = series**2 * (i + 1)
|
||||
series += np.random.rand(year_count) * noise
|
||||
ax.plot(x, series, plt_format)
|
||||
if show_legend:
|
||||
plt.legend(companies)
|
||||
plt.close()
|
||||
return fig
|
||||
|
||||
|
||||
demo = gr.Interface(
|
||||
plot_forecast,
|
||||
[
|
||||
gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
||||
gr.CheckboxGroup(["Google", "Microsoft", "Gradio"], label="Company Selection"),
|
||||
gr.Slider(minimum=1, maximum=100, label="Noise Level"),
|
||||
gr.Checkbox(label="Show Legend"),
|
||||
gr.Dropdown(["cross", "line", "circle"], label="Style"),
|
||||
],
|
||||
gr.Image(plot=True, label="forecast"),
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
11
demo/fraud_detector/fraud.csv
Normal file
11
demo/fraud_detector/fraud.csv
Normal file
@ -0,0 +1,11 @@
|
||||
time,retail,food,other
|
||||
0,109,145,86
|
||||
1,35,87,43
|
||||
2,49,117,34
|
||||
3,127,66,17
|
||||
4,39,82,17
|
||||
5,101,56,79
|
||||
6,100,129,67
|
||||
7,17,88,97
|
||||
8,76,85,145
|
||||
9,111,106,35
|
|
@ -1,5 +1,5 @@
|
||||
import random
|
||||
|
||||
import os
|
||||
import gradio as gr
|
||||
|
||||
|
||||
@ -31,6 +31,9 @@ demo = gr.Interface(
|
||||
gr.Timeseries(x="time", y=["retail", "food", "other"]),
|
||||
gr.Label(label="Fraud Level"),
|
||||
],
|
||||
examples=[
|
||||
[os.path.join(os.path.dirname(__file__), "fraud.csv"), ["retail", "food", "other"], 1.0],
|
||||
],
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
@ -18,9 +18,9 @@ def generate_tone(note, octave, duration):
|
||||
demo = gr.Interface(
|
||||
generate_tone,
|
||||
[
|
||||
gr.inputs.Dropdown(notes, type="index"),
|
||||
gr.inputs.Slider(4, 6, step=1),
|
||||
gr.inputs.Textbox(type="number", default=1, label="Duration in seconds"),
|
||||
gr.Dropdown(notes, type="index"),
|
||||
gr.Slider(value=4, minimum=4, maximum=6, step=1),
|
||||
gr.Textbox(value=1, type="number", label="Duration in seconds"),
|
||||
],
|
||||
"audio",
|
||||
)
|
||||
|
@ -80,17 +80,6 @@ def fn(
|
||||
os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
|
||||
df1, # Dataframe
|
||||
np.random.randint(0, 10, (4, 4)), # Dataframe
|
||||
[
|
||||
im
|
||||
for im in [
|
||||
im1,
|
||||
im2,
|
||||
im3,
|
||||
im4,
|
||||
os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
|
||||
]
|
||||
if im is not None
|
||||
], # Carousel
|
||||
df2, # Timeseries
|
||||
)
|
||||
|
||||
@ -135,7 +124,6 @@ demo = gr.Interface(
|
||||
gr.File(label="File"),
|
||||
gr.Dataframe(label="Dataframe"),
|
||||
gr.Dataframe(label="Numpy"),
|
||||
gr.Carousel(components="image", label="Carousel"),
|
||||
gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
|
||||
],
|
||||
examples=[
|
||||
|
@ -1,18 +1,27 @@
|
||||
import time
|
||||
import gradio as gr
|
||||
import os
|
||||
|
||||
|
||||
def load_mesh(mesh_file_name):
|
||||
time.sleep(2)
|
||||
return mesh_file_name
|
||||
|
||||
|
||||
inputs = gr.Model3D()
|
||||
outputs = gr.Model3D(clear_color=[0.8, 0.2, 0.2, 1.0])
|
||||
|
||||
demo = gr.Interface(
|
||||
fn=load_mesh,
|
||||
inputs=inputs,
|
||||
fn=load_mesh,
|
||||
inputs=inputs,
|
||||
outputs=outputs,
|
||||
examples=[["files/Bunny.obj"], ["files/Duck.glb"], ["files/Fox.gltf"],["files/face.obj"]], cache_examples=True
|
||||
examples=[
|
||||
[os.path.join(os.path.dirname(__file__), "files/Bunny.obj")],
|
||||
[os.path.join(os.path.dirname(__file__), "files/Duck.glb")],
|
||||
[os.path.join(os.path.dirname(__file__), "files/Fox.gltf")],
|
||||
[os.path.join(os.path.dirname(__file__), "files/face.obj")],
|
||||
],
|
||||
cache_examples=True,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -12,5 +12,5 @@ def random_sentence():
|
||||
return sentence_list[random.randint(0, 2)]
|
||||
|
||||
|
||||
demo = gr.Interface(fn=random_sentence, outputs="text")
|
||||
demo = gr.Interface(fn=random_sentence, inputs=None, outputs="text")
|
||||
demo.launch()
|
||||
|
@ -1,3 +1,4 @@
|
||||
numpy
|
||||
matplotlib
|
||||
bokeh
|
||||
plotly
|
@ -57,7 +57,7 @@ inputs = [
|
||||
value=["USA", "Canada"]),
|
||||
gr.Checkbox(label="Social Distancing?"),
|
||||
]
|
||||
outputs = gr.Plot(type="auto")
|
||||
outputs = gr.Plot()
|
||||
|
||||
demo = gr.Interface(fn=outbreak, inputs=inputs, outputs=outputs)
|
||||
|
||||
|
@ -28,7 +28,7 @@ demo = gr.Interface(
|
||||
sales_projections,
|
||||
gr.Dataframe(
|
||||
headers=["Name", "Jan Sales", "Feb Sales", "Mar Sales"],
|
||||
default=[["Jon", 12, 14, 18], ["Alice", 14, 17, 2], ["Sana", 8, 9.5, 12]],
|
||||
value=[["Jon", 12, 14, 18], ["Alice", 14, 17, 2], ["Sana", 8, 9.5, 12]],
|
||||
),
|
||||
["dataframe", "plot", "numpy"],
|
||||
description="Enter sales figures for employees to predict sales trajectory over year.",
|
||||
|
@ -1,10 +1,12 @@
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def stock_forecast(final_year, companies, noise, show_legend, point_style):
|
||||
def plot_forecast(final_year, companies, noise, show_legend, point_style):
|
||||
start_year = 2020
|
||||
x = np.arange(start_year, final_year + 1)
|
||||
year_count = x.shape[0]
|
||||
@ -18,20 +20,19 @@ def stock_forecast(final_year, companies, noise, show_legend, point_style):
|
||||
ax.plot(x, series, plt_format)
|
||||
if show_legend:
|
||||
plt.legend(companies)
|
||||
plt.close()
|
||||
return fig
|
||||
|
||||
|
||||
demo = gr.Interface(
|
||||
stock_forecast,
|
||||
plot_forecast,
|
||||
[
|
||||
gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
||||
gr.CheckboxGroup(["Google", "Microsoft", "Gradio"]),
|
||||
gr.Slider(minimum=1, maximum=100),
|
||||
"checkbox",
|
||||
gr.CheckboxGroup(["Google", "Microsoft", "Gradio"], label="Company Selection"),
|
||||
gr.Slider(minimum=1, maximum=100, label="Noise Level"),
|
||||
gr.Checkbox(label="Show Legend"),
|
||||
gr.Dropdown(["cross", "line", "circle"], label="Style"),
|
||||
],
|
||||
gr.Image(plot=True, label="forecast"),
|
||||
gr.Plot(label="forecast"),
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1 +1 @@
|
||||
deepspeech==0.8.2
|
||||
deepspeech==0.9.3
|
@ -1,9 +1,15 @@
|
||||
from deepspeech import Model
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
import urllib.request
|
||||
|
||||
model_file_path = "deepspeech-0.9.3-models.pbmm"
|
||||
lm_file_path = "deepspeech-0.9.3-models.scorer"
|
||||
url = "https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/"
|
||||
|
||||
urllib.request.urlretrieve(url + model_file_path, filename=model_file_path)
|
||||
urllib.request.urlretrieve(url + lm_file_path, filename=lm_file_path)
|
||||
|
||||
model_file_path = "deepspeech-0.8.2-models.pbmm"
|
||||
lm_file_path = "deepspeech-0.8.2-models.scorer"
|
||||
beam_width = 100
|
||||
lm_alpha = 0.93
|
||||
lm_beta = 1.18
|
||||
@ -42,4 +48,4 @@ def transcribe(speech, stream):
|
||||
demo = gr.Interface(transcribe, ["microphone", "state"], ["text", "state"], live=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
demo.launch(debug=True)
|
@ -11,7 +11,6 @@ from gradio.components import (
|
||||
JSON,
|
||||
Audio,
|
||||
Button,
|
||||
Carousel,
|
||||
Chatbot,
|
||||
Checkbox,
|
||||
Checkboxgroup,
|
||||
|
@ -3033,111 +3033,6 @@ class Gallery(IOComponent):
|
||||
)
|
||||
|
||||
|
||||
# max_grid=[3], grid_behavior="scale", height="auto"
|
||||
class Carousel(IOComponent):
|
||||
"""
|
||||
Used to display a list of arbitrary components that can be scrolled through.
|
||||
Preprocessing: this component does *not* accept input.
|
||||
Postprocessing: Expects a nested {List[List]} where the inner elements depend on the components in the Carousel.
|
||||
|
||||
Demos: disease_report
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
components: Component | List[Component],
|
||||
label: Optional[str] = None,
|
||||
show_label: bool = True,
|
||||
visible: bool = True,
|
||||
elem_id: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Parameters:
|
||||
components (Union[List[OutputComponent], OutputComponent]): Classes of component(s) that will be scrolled through.
|
||||
label (Optional[str]): component name in interface.
|
||||
show_label (bool): if True, will display label.
|
||||
visible (bool): If False, component will be hidden.
|
||||
"""
|
||||
if not isinstance(components, list):
|
||||
components = [components]
|
||||
self.components = [
|
||||
get_component_instance(component) for component in components
|
||||
]
|
||||
IOComponent.__init__(
|
||||
self,
|
||||
label=label,
|
||||
show_label=show_label,
|
||||
visible=visible,
|
||||
elem_id=elem_id,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def get_config(self):
|
||||
return {
|
||||
"components": [component.get_config() for component in self.components],
|
||||
**IOComponent.get_config(self),
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def update(
|
||||
value: Optional[Any] = None,
|
||||
label: Optional[str] = None,
|
||||
show_label: Optional[bool] = None,
|
||||
visible: Optional[bool] = None,
|
||||
):
|
||||
return {
|
||||
"label": label,
|
||||
"show_label": show_label,
|
||||
"visible": visible,
|
||||
"value": value,
|
||||
"__type__": "update",
|
||||
}
|
||||
|
||||
def postprocess(self, y):
|
||||
"""
|
||||
Parameters:
|
||||
y (List[List[Any]]): carousel output
|
||||
Returns:
|
||||
(List[List[Any]]): 2D array, where each sublist represents one set of outputs or 'slide' in the carousel
|
||||
"""
|
||||
if isinstance(y, list):
|
||||
if len(y) != 0 and not isinstance(y[0], list):
|
||||
y = [[z] for z in y]
|
||||
output = []
|
||||
for row in y:
|
||||
output_row = []
|
||||
for i, cell in enumerate(row):
|
||||
output_row.append(self.components[i].postprocess(cell))
|
||||
output.append(output_row)
|
||||
return output
|
||||
else:
|
||||
raise ValueError("Unknown type. Please provide a list for the Carousel.")
|
||||
|
||||
def save_flagged(self, dir, label, data, encryption_key):
|
||||
return json.dumps(
|
||||
[
|
||||
[
|
||||
component.save_flagged(
|
||||
dir, f"{label}_{j}", data[i][j], encryption_key
|
||||
)
|
||||
for j, component in enumerate(self.components)
|
||||
]
|
||||
for i, _ in enumerate(data)
|
||||
]
|
||||
)
|
||||
|
||||
def restore_flagged(self, dir, data, encryption_key):
|
||||
return [
|
||||
[
|
||||
component.restore_flagged(dir, sample, encryption_key)
|
||||
for component, sample in zip(self.components, sample_set)
|
||||
]
|
||||
for sample_set in json.loads(data)
|
||||
]
|
||||
|
||||
|
||||
class Chatbot(Changeable, IOComponent):
|
||||
"""
|
||||
Displays a chatbot output showing both user submitted messages and responses
|
||||
@ -3341,7 +3236,7 @@ class Plot(Changeable, Clearable, IOComponent):
|
||||
Preprocessing: this component does *not* accept input.
|
||||
Postprocessing: expects either a {matplotlib.pyplot.Figure}, a {plotly.graph_objects._figure.Figure}, or a {dict} corresponding to a bokeh plot (json_item format)
|
||||
|
||||
Demos: outbreak_forecast, blocks_kinematics
|
||||
Demos: outbreak_forecast, blocks_kinematics, stock_forecast
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -3394,7 +3289,6 @@ class Plot(Changeable, Clearable, IOComponent):
|
||||
(str): plot type
|
||||
(str): plot base64 or json
|
||||
"""
|
||||
dtype = self.type
|
||||
if isinstance(y, (ModuleType, matplotlib.pyplot.Figure)):
|
||||
dtype = "matplotlib"
|
||||
out_y = processing_utils.encode_plot_to_base64(y)
|
||||
|
@ -12,7 +12,6 @@ from typing import Dict, List, Optional
|
||||
from gradio.components import HTML as C_HTML
|
||||
from gradio.components import JSON as C_JSON
|
||||
from gradio.components import Audio as C_Audio
|
||||
from gradio.components import Carousel as C_Carousel
|
||||
from gradio.components import Chatbot as C_Chatbot
|
||||
from gradio.components import Component as Component
|
||||
from gradio.components import Dataframe as C_Dataframe
|
||||
@ -311,7 +310,7 @@ class HTML(C_HTML):
|
||||
super().__init__(label=label)
|
||||
|
||||
|
||||
class Carousel(C_Carousel):
|
||||
class Carousel:
|
||||
"""
|
||||
Component displays a set of output components that can be scrolled through.
|
||||
Output type: List[List[Any]]
|
||||
@ -328,11 +327,10 @@ class Carousel(C_Carousel):
|
||||
components (Union[List[OutputComponent], OutputComponent]): Classes of component(s) that will be scrolled through.
|
||||
label (str): component name in interface.
|
||||
"""
|
||||
warnings.warn(
|
||||
"Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components",
|
||||
DeprecationWarning,
|
||||
raise NotImplementedError(
|
||||
"The Carousel component has not been implemented in Gradio 3.0. Please "
|
||||
"consider using the Gallery component instead."
|
||||
)
|
||||
super().__init__(components=components, label=label)
|
||||
|
||||
|
||||
class Chatbot(C_Chatbot):
|
||||
|
@ -47,16 +47,6 @@ class Sketchpad(components.Image):
|
||||
)
|
||||
|
||||
|
||||
class Plot(components.Image):
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Custom component
|
||||
@param kwargs:
|
||||
"""
|
||||
self.is_template = True
|
||||
super().__init__(type="plot", **kwargs)
|
||||
|
||||
|
||||
class Pil(components.Image):
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
|
@ -1578,102 +1578,5 @@ class TestHTML(unittest.TestCase):
|
||||
self.assertEqual(iface.process(["test"])[0], "<strong>test</strong>")
|
||||
|
||||
|
||||
class TestCarousel(unittest.TestCase):
|
||||
def test_component_functions(self):
|
||||
"""
|
||||
Postprocess, get_config, save_flagged, restore_flagged
|
||||
"""
|
||||
carousel_output = gr.Carousel(
|
||||
components=[gr.Textbox(), gr.Image()], label="Disease"
|
||||
)
|
||||
|
||||
output = carousel_output.postprocess(
|
||||
[
|
||||
["Hello World", "test/test_files/bus.png"],
|
||||
["Bye World", "test/test_files/bus.png"],
|
||||
]
|
||||
)
|
||||
self.assertEqual(
|
||||
output,
|
||||
[
|
||||
["Hello World", deepcopy(media_data.BASE64_IMAGE)],
|
||||
["Bye World", deepcopy(media_data.BASE64_IMAGE)],
|
||||
],
|
||||
)
|
||||
|
||||
carousel_output = gr.Carousel(components=gr.Textbox(), label="Disease")
|
||||
output = carousel_output.postprocess([["Hello World"], ["Bye World"]])
|
||||
self.assertEqual(output, [["Hello World"], ["Bye World"]])
|
||||
self.assertEqual(
|
||||
carousel_output.get_config(),
|
||||
{
|
||||
"components": [
|
||||
{
|
||||
"name": "textbox",
|
||||
"show_label": True,
|
||||
"label": None,
|
||||
"value": "",
|
||||
"lines": 1,
|
||||
"max_lines": 20,
|
||||
"style": {},
|
||||
"elem_id": None,
|
||||
"visible": True,
|
||||
"placeholder": None,
|
||||
"interactive": None,
|
||||
}
|
||||
],
|
||||
"name": "carousel",
|
||||
"show_label": True,
|
||||
"label": "Disease",
|
||||
"style": {},
|
||||
"elem_id": None,
|
||||
"visible": True,
|
||||
"interactive": None,
|
||||
},
|
||||
)
|
||||
output = carousel_output.postprocess(["Hello World", "Bye World"])
|
||||
self.assertEqual(output, [["Hello World"], ["Bye World"]])
|
||||
with self.assertRaises(ValueError):
|
||||
carousel_output.postprocess("Hello World!")
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
to_save = carousel_output.save_flagged(
|
||||
tmpdirname, "carousel_output", output, None
|
||||
)
|
||||
self.assertEqual(to_save, '[["Hello World"], ["Bye World"]]')
|
||||
restored = carousel_output.restore_flagged(tmpdirname, to_save, None)
|
||||
self.assertEqual(output, restored)
|
||||
|
||||
def test_in_interface(self):
|
||||
"""
|
||||
Interface, process
|
||||
"""
|
||||
carousel_output = gr.Carousel(
|
||||
components=[gr.Textbox(), gr.Image()], label="Disease"
|
||||
)
|
||||
|
||||
def report(img):
|
||||
results = []
|
||||
for i, mode in enumerate(["Red", "Green", "Blue"]):
|
||||
color_filter = np.array([0, 0, 0])
|
||||
color_filter[i] = 1
|
||||
results.append([mode, img * color_filter])
|
||||
return results
|
||||
|
||||
iface = gr.Interface(report, gr.Image(type="numpy"), carousel_output)
|
||||
result = iface.process([deepcopy(media_data.BASE64_IMAGE)])
|
||||
self.assertTrue(result[0][0][0] == "Red")
|
||||
self.assertTrue(
|
||||
result[0][0][1].startswith("")
|
||||
)
|
||||
self.assertTrue(result[0][1][0] == "Green")
|
||||
self.assertTrue(
|
||||
result[0][1][1].startswith("")
|
||||
)
|
||||
self.assertTrue(result[0][2][0] == "Blue")
|
||||
self.assertTrue(
|
||||
result[0][2][1].startswith("")
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
x
Reference in New Issue
Block a user