diff --git a/gradio/preprocessing_utils.py b/gradio/preprocessing_utils.py index 9708b3e603..50d90bc856 100644 --- a/gradio/preprocessing_utils.py +++ b/gradio/preprocessing_utils.py @@ -22,9 +22,7 @@ def encode_array_to_base64(image_array): PIL_image = Image.fromarray(skimage.img_as_ubyte(image_array)) PIL_image.save(output_bytes, 'PNG') bytes_data = output_bytes.getvalue() - base64_str = str(base64.b64encode(bytes_data), 'utf-8') - return "data:image/png;base64," + base64_str diff --git a/gradio/test.py b/gradio/test.py index c9b785d9fc..38576aeb56 100644 --- a/gradio/test.py +++ b/gradio/test.py @@ -2,30 +2,20 @@ import tensorflow as tf import gradio -#CREATE INTERFACE USING 'GOOD' MNIST MODEL (x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data() -model = tf.keras.models.load_model('MNIST_9344.h5') -input = gradio.inputs.Sketchpad(sample_inputs=x_train[:10]) -iface = gradio.Interface(inputs=input, outputs="label", model=model, model_type='keras') -iface.launch(inline=False, share=False, inbrowser=True); +x_train, x_test = x_train / 255.0, x_test / 255.0 +model = tf.keras.models.Sequential([ + tf.keras.layers.Flatten(), + tf.keras.layers.Dense(512, activation=tf.nn.relu), + tf.keras.layers.Dropout(0.2), + tf.keras.layers.Dense(10, activation=tf.nn.softmax) +]) -#CREATE INTERFACE BY TRAINING MSNIST MODEL - -# (x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data() -# x_train, x_test = x_train / 255.0, x_test / 255.0 -# -# model = tf.keras.models.Sequential([ -# tf.keras.layers.Flatten(), -# tf.keras.layers.Dense(512, activation=tf.nn.relu), -# tf.keras.layers.Dropout(0.2), -# tf.keras.layers.Dense(10, activation=tf.nn.softmax) -# ]) -# -# model.compile(optimizer='adam', -# loss='sparse_categorical_crossentropy', -# metrics=['accuracy']) -# model.fit(x_train, y_train, epochs=1) -# inp = gradio.inputs.Sketchpad(sample_inputs=x_train[:10]) -# iface = gradio.Interface(inputs=inp, outputs="label", model=model, model_type='keras') -# iface.launch(inline=False, share=False, inbrowser=True); \ No newline at end of file +model.compile(optimizer='adam', + loss='sparse_categorical_crossentropy', + metrics=['accuracy']) +model.fit(x_train, y_train, epochs=1) +inp = gradio.inputs.Sketchpad(sample_inputs=x_train[:10]) +iface = gradio.Interface(inputs=inp, outputs="label", model=model, model_type='keras') +iface.launch(inline=False, share=False, inbrowser=True); \ No newline at end of file diff --git a/test/test_networking.py b/test/test_networking.py index 3922db5222..0c89210752 100644 --- a/test/test_networking.py +++ b/test/test_networking.py @@ -41,7 +41,7 @@ class TestSetSampleData(unittest.TestCase): config_file = os.path.join(temp_dir, 'static/config.json') with open(config_file) as json_file: data = json.load(json_file) - self.assertFalse(test_array == data["sample_inputs"]) + self.assertTrue(test_array == data["sample_inputs"]) # class TestCopyFiles(unittest.TestCase): # def test_copy_files(self):