mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
Merge branch 'master' of https://github.com/gradio-app/gradio
This commit is contained in:
commit
53ae797631
@ -10,7 +10,6 @@ gradio/outputs.py
|
||||
gradio/preprocessing_utils.py
|
||||
gradio/strings.py
|
||||
gradio/tunneling.py
|
||||
gradio/validation_data.py
|
||||
gradio.egg-info/PKG-INFO
|
||||
gradio.egg-info/SOURCES.txt
|
||||
gradio.egg-info/dependency_links.txt
|
||||
|
@ -11,11 +11,12 @@ import time
|
||||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import base64
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import PIL.ImageOps
|
||||
import scipy.io.wavfile
|
||||
from gradio import preprocessing_utils, validation_data
|
||||
from gradio import preprocessing_utils
|
||||
|
||||
# Where to find the static resources associated with each template.
|
||||
# BASE_INPUT_INTERFACE_TEMPLATE_PATH = 'static/js/interfaces/input/{}.js'
|
||||
@ -31,13 +32,6 @@ class AbstractInput(ABC):
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
|
||||
def get_validation_inputs(self):
|
||||
"""
|
||||
An interface can optionally implement a method that returns a list of examples inputs that it should be able to
|
||||
accept and preprocess for validation purposes.
|
||||
"""
|
||||
return []
|
||||
|
||||
def get_template_context(self):
|
||||
"""
|
||||
:return: a dictionary with context variables for the javascript file associated with the context
|
||||
@ -63,6 +57,11 @@ class AbstractInput(ABC):
|
||||
"""
|
||||
return {}
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
All interfaces should define a method that rebuilds the flagged input when it's passed back (i.e. rebuilds image from base64)
|
||||
"""
|
||||
return data
|
||||
|
||||
class Textbox(AbstractInput):
|
||||
"""
|
||||
@ -253,9 +252,6 @@ class Image(AbstractInput):
|
||||
self.image_mode = image_mode
|
||||
super().__init__(label)
|
||||
|
||||
def get_validation_inputs(self):
|
||||
return validation_data.BASE64_COLOR_IMAGES
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
@ -290,6 +286,16 @@ class Image(AbstractInput):
|
||||
else:
|
||||
return example
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
Default rebuild method to decode a base64 image
|
||||
"""
|
||||
im = preprocessing_utils.decode_base64_to_image(data)
|
||||
timestamp = datetime.datetime.now()
|
||||
filename = f'input_{timestamp.strftime("%Y-%m-%d-%H-%M-%S")}.png'
|
||||
im.save(f'{dir}/{filename}', 'PNG')
|
||||
return filename
|
||||
|
||||
|
||||
class Sketchpad(AbstractInput):
|
||||
"""
|
||||
@ -341,6 +347,16 @@ class Sketchpad(AbstractInput):
|
||||
def process_example(self, example):
|
||||
return preprocessing_utils.convert_file_to_base64(example)
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
Default rebuild method to decode a base64 image
|
||||
"""
|
||||
im = preprocessing_utils.decode_base64_to_image(data)
|
||||
timestamp = datetime.datetime.now()
|
||||
filename = f'input_{timestamp.strftime("%Y-%m-%d-%H-%M-%S")}.png'
|
||||
im.save(f'{dir}/{filename}', 'PNG')
|
||||
return filename
|
||||
|
||||
|
||||
class Webcam(AbstractInput):
|
||||
"""
|
||||
@ -359,9 +375,6 @@ class Webcam(AbstractInput):
|
||||
self.num_channels = 3
|
||||
super().__init__(label)
|
||||
|
||||
def get_validation_inputs(self):
|
||||
return validation_data.BASE64_COLOR_IMAGES
|
||||
|
||||
@classmethod
|
||||
def get_shortcut_implementations(cls):
|
||||
return {
|
||||
@ -378,6 +391,16 @@ class Webcam(AbstractInput):
|
||||
im, (self.image_width, self.image_height))
|
||||
return np.array(im)
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
Default rebuild method to decode a base64 image
|
||||
"""
|
||||
im = preprocessing_utils.decode_base64_to_image(data)
|
||||
timestamp = datetime.datetime.now()
|
||||
filename = f'input_{timestamp.strftime("%Y-%m-%d-%H-%M-%S")}.png'
|
||||
im.save('{}/{}'.format(dir, filename), 'PNG')
|
||||
return filename
|
||||
|
||||
|
||||
class Microphone(AbstractInput):
|
||||
"""
|
||||
@ -414,6 +437,15 @@ class Microphone(AbstractInput):
|
||||
_, signal = scipy.io.wavfile.read(file_obj.name)
|
||||
return signal
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
inp = data.split(';')[1].split(',')[1]
|
||||
wav_obj = base64.b64decode(inp)
|
||||
timestamp = datetime.datetime.now()
|
||||
filename = f'input_{timestamp.strftime("%Y-%m-%d-%H-%M-%S")}.wav'
|
||||
with open("{}/{}".format(dir, filename), "wb+") as f:
|
||||
f.write(wav_obj)
|
||||
return filename
|
||||
|
||||
|
||||
# Automatically adds all shortcut implementations in AbstractInput into a dictionary.
|
||||
shortcuts = {}
|
||||
|
@ -4,12 +4,11 @@ interface using the input and output types.
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
import traceback
|
||||
import webbrowser
|
||||
|
||||
import gradio.inputs
|
||||
import gradio.outputs
|
||||
from gradio import networking, strings
|
||||
from gradio import networking, strings, utils
|
||||
from distutils.version import StrictVersion
|
||||
import pkg_resources
|
||||
import requests
|
||||
@ -20,6 +19,7 @@ from IPython import get_ipython
|
||||
import sys
|
||||
import weakref
|
||||
import analytics
|
||||
import os
|
||||
|
||||
|
||||
PKG_VERSION_URL = "https://gradio.app/api/pkg-version"
|
||||
@ -37,21 +37,42 @@ class Interface:
|
||||
"""
|
||||
instances = weakref.WeakSet()
|
||||
|
||||
def __init__(self, fn, inputs, outputs, saliency=None, verbose=False, examples=None,
|
||||
@classmethod
|
||||
def get_instances(cls):
|
||||
"""
|
||||
:return: list of all current instances.
|
||||
"""
|
||||
return list(
|
||||
Interface.instances)
|
||||
|
||||
def __init__(self, fn, inputs, outputs, verbose=False, examples=None,
|
||||
live=False, show_input=True, show_output=True,
|
||||
capture_session=False, title=None, description=None,
|
||||
thumbnail=None, server_port=None, server_name=networking.LOCALHOST_NAME,
|
||||
allow_screenshot=True):
|
||||
allow_screenshot=True, allow_flagging=True,
|
||||
flagging_dir="flagged"):
|
||||
"""
|
||||
Parameters:
|
||||
fn (Callable): the function to wrap an interface around.
|
||||
inputs (Union[str, List[Union[str, AbstractInput]]]): a single Gradio input component, or list of Gradio input components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of input components should match the number of parameters in fn.
|
||||
outputs (Union[str, List[Union[str, AbstractOutput]]]): a single Gradio output component, or list of Gradio output components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of output components should match the number of values returned by fn.
|
||||
verbose (bool): whether to print detailed information during launch.
|
||||
examples (List[List[Any]]): sample inputs for the function; if provided, appears below the UI components and can be used to populate the interface. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component.
|
||||
live (bool): whether the interface should automatically reload on change.
|
||||
show_input (bool): if False, removes the input from the interface
|
||||
and underlays it in the output.
|
||||
show_output (bool): if False, removes the output from the interface
|
||||
and overlays it in the input.
|
||||
capture_session (bool): if True, captures the default graph and session (needed for Tensorflow 1.x)
|
||||
title (str): a title for the interface; if provided, appears above the input and output components.
|
||||
description (str): a description for the interface; if provided, appears above the input and output components.
|
||||
examples (List[List[Any]]): sample inputs for the function; if provided, appears below the UI components and can be used to populate the interface. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component.
|
||||
thumbnail (str): path to image or src to use as display picture for
|
||||
models listed in gradio.app/hub
|
||||
allow_screenshot (bool): if False, users will not see a button to
|
||||
take a screenshot of the interface.
|
||||
allow_flagging (bool): if False, users will not see a button to flag an
|
||||
input and output.
|
||||
flagging_dir (str): what to name the dir where flagged data is stored.
|
||||
"""
|
||||
def get_input_instance(iface):
|
||||
if isinstance(iface, str):
|
||||
@ -82,11 +103,11 @@ class Interface:
|
||||
self.output_interfaces = [get_output_instance(outputs)]
|
||||
if not isinstance(fn, list):
|
||||
fn = [fn]
|
||||
|
||||
self.output_interfaces *= len(fn)
|
||||
self.predict = fn
|
||||
self.verbose = verbose
|
||||
self.status = "OFF"
|
||||
self.saliency = saliency
|
||||
self.live = live
|
||||
self.show_input = show_input
|
||||
self.show_output = show_output
|
||||
@ -101,12 +122,13 @@ class Interface:
|
||||
self.server_port = server_port
|
||||
self.simple_server = None
|
||||
self.allow_screenshot = allow_screenshot
|
||||
self.allow_flagging = allow_flagging
|
||||
self.flagging_dir = flagging_dir
|
||||
Interface.instances.add(self)
|
||||
|
||||
data = {'fn': fn,
|
||||
'inputs': inputs,
|
||||
'outputs': outputs,
|
||||
'saliency': saliency,
|
||||
'live': live,
|
||||
'capture_session': capture_session,
|
||||
'ip_address': ip_address
|
||||
@ -117,9 +139,23 @@ class Interface:
|
||||
import tensorflow as tf
|
||||
self.session = tf.get_default_graph(), \
|
||||
tf.keras.backend.get_session()
|
||||
except (ImportError, AttributeError): # If they are using TF >= 2.0 or don't have TF, just ignore this.
|
||||
except (ImportError, AttributeError):
|
||||
# If they are using TF >= 2.0 or don't have TF,
|
||||
# just ignore this.
|
||||
pass
|
||||
|
||||
if self.allow_flagging:
|
||||
if self.title is not None:
|
||||
dir_name = "_".join(self.title.split(" "))
|
||||
else:
|
||||
dir_name = "_".join([fn.__name__ for fn in self.predict])
|
||||
index = 1
|
||||
while os.path.exists(self.flagging_dir + "/" + dir_name +
|
||||
"_{}".format(index)):
|
||||
index += 1
|
||||
self.flagging_dir = self.flagging_dir + "/" + dir_name + \
|
||||
"_{}".format(index)
|
||||
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-initiated-analytics/',
|
||||
data=data)
|
||||
@ -141,7 +177,8 @@ class Interface:
|
||||
"title": self.title,
|
||||
"description": self.description,
|
||||
"thumbnail": self.thumbnail,
|
||||
"allow_screenshot": self.allow_screenshot
|
||||
"allow_screenshot": self.allow_screenshot,
|
||||
"allow_flagging": self.allow_flagging
|
||||
}
|
||||
try:
|
||||
param_names = inspect.getfullargspec(self.predict[0])[0]
|
||||
@ -158,6 +195,15 @@ class Interface:
|
||||
return config
|
||||
|
||||
def process(self, raw_input):
|
||||
"""
|
||||
:param raw_input: a list of raw inputs to process and apply the
|
||||
prediction(s) on.
|
||||
:return:
|
||||
processed output: a list of processed outputs to return as the
|
||||
prediction(s).
|
||||
duration: a list of time deltas measuring inference time for each
|
||||
prediction fn.
|
||||
"""
|
||||
processed_input = [input_interface.preprocess(
|
||||
raw_input[i]) for i, input_interface in
|
||||
enumerate(self.input_interfaces)]
|
||||
@ -194,82 +240,27 @@ class Interface:
|
||||
predictions[i]) for i, output_interface in enumerate(self.output_interfaces)]
|
||||
return processed_output, durations
|
||||
|
||||
def validate(self):
|
||||
if self.validate_flag:
|
||||
if self.verbose:
|
||||
print("Interface already validated")
|
||||
return
|
||||
validation_inputs = self.input_interface.get_validation_inputs()
|
||||
n = len(validation_inputs)
|
||||
if n == 0:
|
||||
self.validate_flag = True
|
||||
if self.verbose:
|
||||
print(
|
||||
"No validation samples for this interface... skipping validation."
|
||||
)
|
||||
return
|
||||
for m, msg in enumerate(validation_inputs):
|
||||
if self.verbose:
|
||||
print(
|
||||
"Validating samples: {}/{} [".format(m+1, n)
|
||||
+ "=" * (m + 1)
|
||||
+ "." * (n - m - 1)
|
||||
+ "]",
|
||||
end="\r",
|
||||
)
|
||||
try:
|
||||
processed_input = self.input_interface.preprocess(msg)
|
||||
prediction = self.predict(processed_input)
|
||||
except Exception as e:
|
||||
data = {'error': e}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
if self.verbose:
|
||||
print("\n----------")
|
||||
print(
|
||||
"Validation failed, likely due to incompatible pre-processing and model input. See below:\n"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
break
|
||||
try:
|
||||
_ = self.output_interface.postprocess(prediction)
|
||||
except Exception as e:
|
||||
data = {'error': e}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
if self.verbose:
|
||||
print("\n----------")
|
||||
print(
|
||||
"Validation failed, likely due to incompatible model output and post-processing."
|
||||
"See below:\n"
|
||||
)
|
||||
print(traceback.format_exc())
|
||||
break
|
||||
else: # This means if a break was not explicitly called
|
||||
self.validate_flag = True
|
||||
if self.verbose:
|
||||
print("\n\nValidation passed successfully!")
|
||||
return
|
||||
raise RuntimeError("Validation did not pass")
|
||||
|
||||
def close(self):
|
||||
if self.simple_server and not(self.simple_server.fileno() == -1): # checks to see if server is running
|
||||
print("Closing Gradio server on port {}...".format(self.server_port))
|
||||
networking.close_server(self.simple_server)
|
||||
|
||||
def launch(self, inline=None, inbrowser=None, share=False, validate=True, debug=False):
|
||||
def launch(self, inline=None, inbrowser=None, share=False, debug=False):
|
||||
"""
|
||||
Parameters
|
||||
share (bool): whether to create a publicly shareable link from your computer for the interface.
|
||||
inline (bool): whether to display in the interface inline on python
|
||||
notebooks.
|
||||
inbrowser (bool): whether to automatically launch the interface in a
|
||||
new tab on the default browser.
|
||||
share (bool): whether to create a publicly shareable link from
|
||||
your computer for the interface.
|
||||
debug (bool): if True, and the interface was launched from Google
|
||||
Colab, prints the errors in the cell output.
|
||||
:returns
|
||||
httpd (str): HTTPServer object
|
||||
path_to_local_server (str): Locally accessible link
|
||||
share_url (str): Publicly accessible link (if share=True)
|
||||
"""
|
||||
# if validate and not self.validate_flag:
|
||||
# self.validate()
|
||||
|
||||
output_directory = tempfile.mkdtemp()
|
||||
# Set up a port to serve the directory containing the static files with interface.
|
||||
@ -282,20 +273,6 @@ class Interface:
|
||||
self.status = "RUNNING"
|
||||
self.simple_server = httpd
|
||||
|
||||
is_colab = False
|
||||
try: # Check if running interactively using ipython.
|
||||
from_ipynb = get_ipython()
|
||||
if "google.colab" in str(from_ipynb):
|
||||
is_colab = True
|
||||
except NameError:
|
||||
data = {'error': 'NameError in launch method'}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
pass
|
||||
|
||||
try:
|
||||
current_pkg_version = pkg_resources.require("gradio")[0].version
|
||||
latest_pkg_version = requests.get(url=PKG_VERSION_URL).json()["version"]
|
||||
@ -308,6 +285,7 @@ class Interface:
|
||||
except: # TODO(abidlabs): don't catch all exceptions
|
||||
pass
|
||||
|
||||
is_colab = utils.colab_check()
|
||||
if not is_colab:
|
||||
print(strings.en["RUNNING_LOCALLY"].format(path_to_local_server))
|
||||
else:
|
||||
@ -322,19 +300,13 @@ class Interface:
|
||||
share_url = networking.setup_tunnel(server_port)
|
||||
print("Running on External URL:", share_url)
|
||||
except RuntimeError:
|
||||
data = {'error': 'RuntimeError in launch method'}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
utils.error_analytics("RuntimeError")
|
||||
share_url = None
|
||||
if self.verbose:
|
||||
print(strings.en["NGROK_NO_INTERNET"])
|
||||
else:
|
||||
if (
|
||||
is_colab
|
||||
): # For a colab notebook, create a public link even if share is False.
|
||||
if is_colab: # For a colab notebook, create a public link even if
|
||||
# share is False.
|
||||
share_url = networking.setup_tunnel(server_port)
|
||||
print("Running on External URL:", share_url)
|
||||
if self.verbose:
|
||||
@ -345,29 +317,22 @@ class Interface:
|
||||
share_url = None
|
||||
|
||||
if inline is None:
|
||||
try: # Check if running interactively using ipython.
|
||||
get_ipython()
|
||||
inline = True
|
||||
if inbrowser is None:
|
||||
inbrowser = False
|
||||
except NameError:
|
||||
inline = False
|
||||
if inbrowser is None:
|
||||
inbrowser = True
|
||||
inline = utils.ipython_check()
|
||||
if inbrowser is None:
|
||||
# if interface won't appear inline, open it in new tab,
|
||||
# otherwise keep it inline
|
||||
inbrowser = not inline
|
||||
else:
|
||||
if inbrowser is None:
|
||||
inbrowser = False
|
||||
|
||||
if inbrowser and not is_colab:
|
||||
webbrowser.open(
|
||||
path_to_local_server
|
||||
) # Open a browser tab with the interface.
|
||||
webbrowser.open(path_to_local_server) # Open a browser tab
|
||||
# with the interface.
|
||||
if inline:
|
||||
from IPython.display import IFrame, display
|
||||
|
||||
if (
|
||||
is_colab
|
||||
): # Embed the remote interface page if on google colab;
|
||||
if (is_colab):
|
||||
# Embed the remote interface page if on google colab;
|
||||
# otherwise, embed the local page.
|
||||
print("Interface loading below...")
|
||||
while not networking.url_ok(share_url):
|
||||
@ -410,10 +375,6 @@ class Interface:
|
||||
pass # do not push analytics if no network
|
||||
return httpd, path_to_local_server, share_url
|
||||
|
||||
@classmethod
|
||||
def get_instances(cls):
|
||||
return list(Interface.instances) # Returns list of all current instances.
|
||||
|
||||
|
||||
def reset_all():
|
||||
for io in Interface.get_instances():
|
||||
|
@ -17,7 +17,6 @@ import requests
|
||||
import sys
|
||||
import analytics
|
||||
|
||||
|
||||
INITIAL_PORT_VALUE = int(os.getenv(
|
||||
'GRADIO_SERVER_PORT', "7860")) # The http server will try to open on port 7860. If not available, 7861, 7862, etc.
|
||||
TRY_NUM_PORTS = int(os.getenv(
|
||||
@ -36,8 +35,6 @@ CONFIG_FILE = "static/config.json"
|
||||
ASSOCIATION_PATH_IN_STATIC = "static/apple-app-site-association"
|
||||
ASSOCIATION_PATH_IN_ROOT = "apple-app-site-association"
|
||||
|
||||
FLAGGING_DIRECTORY = 'static/flagged/'
|
||||
FLAGGING_FILENAME = 'data.txt'
|
||||
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
|
||||
analytics_url = 'https://api.gradio.app/'
|
||||
|
||||
@ -172,20 +169,6 @@ def serve_files_in_background(interface, port, directory_to_serve=None, server_n
|
||||
prediction, durations = interface.process(raw_input)
|
||||
|
||||
output = {"data": prediction, "durations": durations}
|
||||
if interface.saliency is not None:
|
||||
saliency = interface.saliency(raw_input, prediction)
|
||||
output['saliency'] = saliency.tolist()
|
||||
# if interface.always_flag:
|
||||
# msg = json.loads(data_string)
|
||||
# flag_dir = os.path.join(FLAGGING_DIRECTORY, str(interface.hash))
|
||||
# os.makedirs(flag_dir, exist_ok=True)
|
||||
# output_flag = {'input': interface.input_interface.rebuild_flagged(flag_dir, msg['data']),
|
||||
# 'output': interface.output_interface.rebuild_flagged(flag_dir, processed_output),
|
||||
# }
|
||||
# with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
|
||||
# f.write(json.dumps(output_flag))
|
||||
# f.write("\n")
|
||||
|
||||
self.wfile.write(json.dumps(output).encode())
|
||||
|
||||
analytics_thread = threading.Thread(
|
||||
@ -197,20 +180,18 @@ def serve_files_in_background(interface, port, directory_to_serve=None, server_n
|
||||
data_string = self.rfile.read(
|
||||
int(self.headers["Content-Length"]))
|
||||
msg = json.loads(data_string)
|
||||
flag_dir = os.path.join(FLAGGING_DIRECTORY,
|
||||
str(interface.flag_hash))
|
||||
os.makedirs(flag_dir, exist_ok=True)
|
||||
os.makedirs(interface.flagging_dir, exist_ok=True)
|
||||
output = {'inputs': [interface.input_interfaces[
|
||||
i].rebuild_flagged(
|
||||
flag_dir, msg['data']['input_data']) for i
|
||||
i].rebuild(
|
||||
interface.flagging_dir, msg['data']['input_data']) for i
|
||||
in range(len(interface.input_interfaces))],
|
||||
'outputs': [interface.output_interfaces[
|
||||
i].rebuild_flagged(
|
||||
flag_dir, msg['data']['output_data']) for i
|
||||
in range(len(interface.output_interfaces))],
|
||||
'message': msg['data']['message']}
|
||||
i].rebuild(
|
||||
interface.flagging_dir, msg['data']['output_data']) for i
|
||||
in range(len(interface.output_interfaces))]}
|
||||
|
||||
with open(os.path.join(flag_dir, FLAGGING_FILENAME), 'a+') as f:
|
||||
with open("{}/log.txt".format(interface.flagging_dir),
|
||||
'a+') as f:
|
||||
f.write(json.dumps(output))
|
||||
f.write("\n")
|
||||
|
||||
|
@ -44,6 +44,12 @@ class AbstractOutput(ABC):
|
||||
"""
|
||||
return {}
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
All interfaces should define a method that rebuilds the flagged input when it's passed back (i.e. rebuilds image from base64)
|
||||
"""
|
||||
return data
|
||||
|
||||
|
||||
class Textbox(AbstractOutput):
|
||||
'''
|
||||
@ -130,6 +136,11 @@ class Label(AbstractOutput):
|
||||
"label": {},
|
||||
}
|
||||
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
Default rebuild method for label
|
||||
"""
|
||||
return json.loads(data)
|
||||
|
||||
class Image(AbstractOutput):
|
||||
'''
|
||||
@ -169,11 +180,11 @@ class Image(AbstractOutput):
|
||||
raise ValueError(
|
||||
"The `Image` output interface (with plt=False) expects a numpy array.")
|
||||
|
||||
def rebuild_flagged(self, dir, msg):
|
||||
def rebuild(self, dir, data):
|
||||
"""
|
||||
Default rebuild method to decode a base64 image
|
||||
"""
|
||||
im = preprocessing_utils.decode_base64_to_image(msg)
|
||||
im = preprocessing_utils.decode_base64_to_image(data)
|
||||
timestamp = datetime.datetime.now()
|
||||
filename = 'output_{}.png'.format(timestamp.
|
||||
strftime("%Y-%m-%d-%H-%M-%S"))
|
||||
@ -184,7 +195,7 @@ class Image(AbstractOutput):
|
||||
class KeyValues(AbstractOutput):
|
||||
'''
|
||||
Component displays a table representing values for multiple fields.
|
||||
Output type: List[Tuple[str, value]]
|
||||
Output type: Dict[str, value]
|
||||
'''
|
||||
|
||||
def __init__(self, label=None):
|
||||
@ -238,7 +249,7 @@ class HighlightedText(AbstractOutput):
|
||||
if isinstance(prediction, str) or isinstance(prediction, int) or isinstance(prediction, float):
|
||||
return str(prediction)
|
||||
else:
|
||||
raise ValueError("The `Textbox` output interface expects an output that is one of: a string, or"
|
||||
raise ValueError("The `HighlightedText` output interface expects an output that is one of: a string, or"
|
||||
"an int/float that can be converted to a string.")
|
||||
|
||||
|
||||
|
@ -75,6 +75,12 @@ input.submit {
|
||||
input.submit:hover {
|
||||
background-color: #f39c12;
|
||||
}
|
||||
.flag {
|
||||
visibility: hidden;
|
||||
}
|
||||
.flagged {
|
||||
background-color: pink !important;
|
||||
}
|
||||
/* label:hover {
|
||||
background-color: lightgray;
|
||||
} */
|
||||
|
@ -56,12 +56,11 @@ var io_master_template = {
|
||||
this.target.find(".output_interfaces").css("opacity", 1);
|
||||
}
|
||||
},
|
||||
flag: function(message) {
|
||||
flag: function() {
|
||||
var post_data = {
|
||||
'data': {
|
||||
'input_data' : toStringIfObject(this.last_input) ,
|
||||
'output_data' : toStringIfObject(this.last_output),
|
||||
'message' : message
|
||||
'output_data' : toStringIfObject(this.last_output)
|
||||
}
|
||||
}
|
||||
$.ajax({type: "POST",
|
||||
|
@ -22,7 +22,7 @@ function gradio(config, fn, target) {
|
||||
<div class="screenshot_logo">
|
||||
<img src="static/img/logo_inline.png">
|
||||
</div>
|
||||
</div>
|
||||
<input class="flag panel_button" type="button" value="FLAG"/>
|
||||
</div>
|
||||
</div>`);
|
||||
let io_master = Object.create(io_master_template);
|
||||
@ -117,6 +117,7 @@ function gradio(config, fn, target) {
|
||||
output_interface.clear();
|
||||
}
|
||||
target.find(".flag").removeClass("flagged");
|
||||
target.find(".flag").val("FLAG");
|
||||
target.find(".flag_message").empty();
|
||||
target.find(".loading").addClass("invisible");
|
||||
target.find(".loading_time").text("");
|
||||
@ -124,9 +125,20 @@ function gradio(config, fn, target) {
|
||||
io_master.last_input = null;
|
||||
io_master.last_output = null;
|
||||
});
|
||||
if (config["allow_screenshot"]) {
|
||||
|
||||
if (config["allow_screenshot"] && !config["allow_flagging"]) {
|
||||
target.find(".screenshot").css("visibility", "visible");
|
||||
target.find(".flag").css("display", "none")
|
||||
}
|
||||
if (!config["allow_screenshot"] && config["allow_flagging"]) {
|
||||
target.find(".flag").css("visibility", "visible");
|
||||
target.find(".screenshot").css("display", "none")
|
||||
}
|
||||
if (config["allow_screenshot"] && config["allow_flagging"]) {
|
||||
target.find(".screenshot").css("visibility", "visible");
|
||||
target.find(".flag").css("visibility", "visible")
|
||||
}
|
||||
|
||||
target.find(".screenshot").click(function() {
|
||||
$(".screenshot").hide();
|
||||
$(".screenshot_logo").show();
|
||||
@ -146,11 +158,22 @@ function gradio(config, fn, target) {
|
||||
target.find(".submit").click(function() {
|
||||
io_master.gather();
|
||||
target.find(".flag").removeClass("flagged");
|
||||
target.find(".flag").val("FLAG");
|
||||
})
|
||||
}
|
||||
if (!config.show_input) {
|
||||
target.find(".input_panel").hide();
|
||||
}
|
||||
}
|
||||
|
||||
target.find(".flag").click(function() {
|
||||
if (io_master.last_output) {
|
||||
target.find(".flag").addClass("flagged");
|
||||
target.find(".flag").val("FLAGGED");
|
||||
io_master.flag();
|
||||
|
||||
// io_master.flag($(".flag_message").val());
|
||||
}
|
||||
})
|
||||
|
||||
return io_master;
|
||||
}
|
||||
|
@ -11,10 +11,10 @@ const key_values = {
|
||||
init: function(opts) {},
|
||||
output: function(data) {
|
||||
let html = ""
|
||||
for (let row of data) {
|
||||
for (const [key, value] of Object.entries(data)) {
|
||||
html += `<tr>
|
||||
<td>${row[0]}</td>
|
||||
<td>${row[1]}</td>
|
||||
<td>${key}</td>
|
||||
<td>${value}</td>
|
||||
</tr>`;
|
||||
}
|
||||
this.target.find("tbody").html(html);
|
||||
|
44
gradio/utils.py
Normal file
44
gradio/utils.py
Normal file
@ -0,0 +1,44 @@
|
||||
import requests
|
||||
from IPython import get_ipython
|
||||
analytics_url = 'https://api.gradio.app/'
|
||||
|
||||
|
||||
def error_analytics(type):
|
||||
"""
|
||||
Send error analytics if there is network
|
||||
:param type: RuntimeError or NameError
|
||||
"""
|
||||
data = {'error': '{} in launch method'.format(type)}
|
||||
try:
|
||||
requests.post(analytics_url + 'gradio-error-analytics/',
|
||||
data=data)
|
||||
except requests.ConnectionError:
|
||||
pass # do not push analytics if no network
|
||||
|
||||
|
||||
def colab_check():
|
||||
"""
|
||||
Check if interface is launching from Google Colab
|
||||
:return is_colab (bool): True or False
|
||||
"""
|
||||
is_colab = False
|
||||
try: # Check if running interactively using ipython.
|
||||
from_ipynb = get_ipython()
|
||||
if "google.colab" in str(from_ipynb):
|
||||
is_colab = True
|
||||
except NameError:
|
||||
error_analytics("NameError", analytics_url)
|
||||
return is_colab
|
||||
|
||||
|
||||
def ipython_check():
|
||||
"""
|
||||
Check if interface is launching from iPython (not colab)
|
||||
:return is_ipython (bool): True or False
|
||||
"""
|
||||
try: # Check if running interactively using ipython.
|
||||
get_ipython()
|
||||
is_ipython = True
|
||||
except NameError:
|
||||
is_ipython = False
|
||||
return is_ipython
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user