Make chatbot input fields non-interactive while bot is streaming (#4363)

* Add demo impl

* trigger then if generating

* remove unused value

* CHANGELOG

* Fix code

* Update guide

* Update guides/07_other-tutorials/creating-a-chatbot.md

Co-authored-by: pngwn <hello@pngwn.io>

---------

Co-authored-by: pngwn <hello@pngwn.io>
Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
This commit is contained in:
Freddy Boulton 2023-06-01 04:58:22 +09:00 committed by GitHub
parent e503ae0eca
commit 4ee9c1b708
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 20 additions and 12 deletions

View File

@ -1 +1 @@
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_multimodal"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "def add_text(history, text):\n", " history = history + [(text, None)]\n", " return history, \"\"\n", "\n", "def add_file(history, file):\n", " history = history + [((file.name,), None)]\n", " return history\n", "\n", "def bot(history):\n", " response = \"**That's cool!**\"\n", " history[-1][1] = response\n", " return history\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot([], elem_id=\"chatbot\").style(height=750)\n", " \n", " with gr.Row():\n", " with gr.Column(scale=0.85):\n", " txt = gr.Textbox(\n", " show_label=False,\n", " placeholder=\"Enter text and press enter, or upload an image\",\n", " ).style(container=False)\n", " with gr.Column(scale=0.15, min_width=0):\n", " btn = gr.UploadButton(\"\ud83d\udcc1\", file_types=[\"image\", \"video\", \"audio\"])\n", " \n", " txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(\n", " bot, chatbot, chatbot\n", " )\n", " btn.upload(add_file, [chatbot, btn], [chatbot]).then(\n", " bot, chatbot, chatbot\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_multimodal"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "\n", "def add_text(history, text):\n", " history = history + [(text, None)]\n", " return history, gr.update(value=\"\", interactive=False)\n", "\n", "\n", "def add_file(history, file):\n", " history = history + [((file.name,), None)]\n", " return history\n", "\n", "\n", "def bot(history):\n", " response = \"**That's cool!**\"\n", " history[-1][1] = response\n", " return history\n", "\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot([], elem_id=\"chatbot\").style(height=750)\n", "\n", " with gr.Row():\n", " with gr.Column(scale=0.85):\n", " txt = gr.Textbox(\n", " show_label=False,\n", " placeholder=\"Enter text and press enter, or upload an image\",\n", " ).style(container=False)\n", " with gr.Column(scale=0.15, min_width=0):\n", " btn = gr.UploadButton(\"\ud83d\udcc1\", file_types=[\"image\", \"video\", \"audio\"])\n", "\n", " txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)\n", " file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}

View File

@ -1,21 +1,25 @@
import gradio as gr
def add_text(history, text):
history = history + [(text, None)]
return history, ""
return history, gr.update(value="", interactive=False)
def add_file(history, file):
history = history + [((file.name,), None)]
return history
def bot(history):
response = "**That's cool!**"
history[-1][1] = response
return history
with gr.Blocks() as demo:
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=750)
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(
@ -24,11 +28,12 @@ with gr.Blocks() as demo:
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, chatbot, chatbot
)
btn.upload(add_file, [chatbot, btn], [chatbot]).then(
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
bot, chatbot, chatbot
)

View File

@ -1 +1 @@
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_streaming"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import random\n", "import time\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot()\n", " msg = gr.Textbox()\n", " clear = gr.Button(\"Clear\")\n", "\n", " def user(user_message, history):\n", " return \"\", history + [[user_message, None]]\n", "\n", " def bot(history):\n", " bot_message = random.choice([\"How are you?\", \"I love you\", \"I'm very hungry\"])\n", " history[-1][1] = \"\"\n", " for character in bot_message:\n", " history[-1][1] += character\n", " time.sleep(0.05)\n", " yield history\n", "\n", " msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " clear.click(lambda: None, None, chatbot, queue=False)\n", " \n", "demo.queue()\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: chatbot_streaming"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import random\n", "import time\n", "\n", "with gr.Blocks() as demo:\n", " chatbot = gr.Chatbot()\n", " msg = gr.Textbox()\n", " clear = gr.Button(\"Clear\")\n", "\n", " def user(user_message, history):\n", " return gr.update(value=\"\", interactive=False), history + [[user_message, None]]\n", "\n", " def bot(history):\n", " bot_message = random.choice([\"How are you?\", \"I love you\", \"I'm very hungry\"])\n", " history[-1][1] = \"\"\n", " for character in bot_message:\n", " history[-1][1] += character\n", " time.sleep(0.05)\n", " yield history\n", "\n", " response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(\n", " bot, chatbot, chatbot\n", " )\n", " response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)\n", " clear.click(lambda: None, None, chatbot, queue=False)\n", "\n", "demo.queue()\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}

View File

@ -8,7 +8,7 @@ with gr.Blocks() as demo:
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
return gr.update(value="", interactive=False), history + [[user_message, None]]
def bot(history):
bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
@ -18,11 +18,12 @@ with gr.Blocks() as demo:
time.sleep(0.05)
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
if __name__ == "__main__":
demo.launch()

View File

@ -44,12 +44,14 @@ There are several ways we can improve the user experience of the chatbot above.
$code_chatbot_streaming
You'll notice that when a user submits their message, we now *chain* two event events with `.then()`:
You'll notice that when a user submits their message, we now *chain* three event events with `.then()`:
1. The first method `user()` updates the chatbot with the user message and clears the input field. Because we want this to happen instantly, we set `queue=False`, which would skip any queue if it had been enabled. The chatbot's history is appended with `(user_message, None)`, the `None` signifying that the bot has not responded.
1. The first method `user()` updates the chatbot with the user message and clears the input field. This method also makes the input field non interactive so that the user can't send another message while the chatbot is responding. Because we want this to happen instantly, we set `queue=False`, which would skip any queue had it been enabled. The chatbot's history is appended with `(user_message, None)`, the `None` signifying that the bot has not responded.
2. The second method, `bot()` updates the chatbot history with the bot's response. Instead of creating a new message, we just replace the previously-created `None` message with the bot's response. Finally, we construct the message character by character and `yield` the intermediate outputs as they are being constructed. Gradio automatically turns any function with the `yield` keyword [into a streaming output interface](/key-features/#iterative-outputs).
3. The third method makes the input field interactive again so that users can send another message to the bot.
Of course, in practice, you would replace `bot()` with your own more complex function, which might call a pretrained model or an API, to generate a response.
Finally, we enable queuing by running `demo.queue()`, which is required for streaming intermediate outputs. You can try the improved chatbot by scrolling to the demo at the top of this page.