upgraded to 0.9.3

This commit is contained in:
Abubakar Abid 2020-06-29 14:05:22 -05:00
parent 4472e27438
commit 48087003ee
6 changed files with 34 additions and 27 deletions

View File

@ -7,7 +7,7 @@ automatically added to a registry, which allows them to be easily referenced in
from abc import ABC, abstractmethod
from gradio import preprocessing_utils, validation_data
import numpy as np
from PIL import Image, ImageOps
import PIL.Image, PIL.ImageOps
import time
import warnings
import json
@ -84,11 +84,11 @@ class Sketchpad(AbstractInput):
Default preprocessing method for the SketchPad is to convert the sketch to black and white and resize 28x28
"""
im_transparent = preprocessing_utils.decode_base64_to_image(inp)
im = Image.new("RGBA", im_transparent.size, "WHITE") # Create a white background for the alpha channel
im = PIL.Image.new("RGBA", im_transparent.size, "WHITE") # Create a white background for the alpha channel
im.paste(im_transparent, (0, 0), im_transparent)
im = im.convert('L')
if self.invert_colors:
im = ImageOps.invert(im)
im = PIL.ImageOps.invert(im)
im = im.resize((self.image_width, self.image_height))
if self.flatten:
array = np.array(im).flatten().reshape(1, self.image_width * self.image_height)
@ -261,6 +261,7 @@ class Slider(AbstractInput):
"checkbox": {},
}
class Checkbox(AbstractInput):
def __init__(self, label=None):
super().__init__(label)
@ -272,7 +273,7 @@ class Checkbox(AbstractInput):
}
class ImageIn(AbstractInput):
class Image(AbstractInput):
def __init__(self, cast_to=None, shape=(224, 224, 3), image_mode='RGB',
scale=1/127.5, shift=-1, cropper_aspect_ratio=None, label=None):
self.cast_to = cast_to

View File

@ -16,7 +16,6 @@ import requests
import random
import time
from IPython import get_ipython
import tensorflow as tf
LOCALHOST_IP = "0.0.0.0"
TRY_NUM_PORTS = 100
@ -31,7 +30,7 @@ class Interface:
def __init__(self, fn, inputs, outputs, saliency=None, verbose=False,
live=False, show_input=True, show_output=True,
load_fn=None, capture_session=False,
load_fn=None, capture_session=False, title=None, description=None,
server_name=LOCALHOST_IP):
"""
:param fn: a function that will process the input panel data from the interface and return the output panel data.
@ -81,6 +80,8 @@ class Interface:
self.capture_session = capture_session
self.session = None
self.server_name = server_name
self.title = title
self.description = description
def get_config_file(self):
return {
@ -93,7 +94,9 @@ class Interface:
"function_count": len(self.predict),
"live": self.live,
"show_input": self.show_input,
"show_output": self.show_output,
"show_output": self.show_output,
"title": self.title,
"description": self.description,
}
def process(self, raw_input):
@ -109,8 +112,15 @@ class Interface:
prediction = predict_fn(*processed_input,
self.context)
else:
prediction = predict_fn(*processed_input,
self.context)
try:
prediction = predict_fn(*processed_input, self.context)
except ValueError:
print("It looks like you might be "
"using tensorflow < 2.0. Please pass "
"capture_session=True in Interface to avoid "
"a 'Tensor is not an element of this graph.' "
"error.")
prediction = predict_fn(*processed_input, self.context)
else:
if self.capture_session:
graph, sess = self.session
@ -118,7 +128,16 @@ class Interface:
with sess.as_default():
prediction = predict_fn(*processed_input)
else:
prediction = predict_fn(*processed_input)
try:
prediction = predict_fn(*processed_input)
except ValueError:
print("It looks like you might be "
"using tensorflow < 2.0. Please pass "
"capture_session=True in Interface to avoid "
"a 'Tensor is not an element of this graph.' "
"error.")
prediction = predict_fn(*processed_input)
if len(self.output_interfaces) / \
len(self.predict) == 1:
prediction = [prediction]
@ -127,7 +146,6 @@ class Interface:
predictions[i]) for i, output_interface in enumerate(self.output_interfaces)]
return processed_output
def validate(self):
if self.validate_flag:
if self.verbose:
@ -180,11 +198,7 @@ class Interface:
return
raise RuntimeError("Validation did not pass")
<<<<<<< HEAD
def launch(self, inline=None, inbrowser=None, share=False, validate=True, title=None, description=None):
=======
def launch(self, inline=None, inbrowser=None, share=False, validate=True):
>>>>>>> 2bd16c2f9c360c98583b94e2f6a6ea7259a98217
"""
Standard method shared by interfaces that creates the interface and sets up a websocket to communicate with it.
:param inline: boolean. If True, then a gradio interface is created inline (e.g. in jupyter or colab notebook)
@ -198,6 +212,7 @@ class Interface:
self.context = context
if self.capture_session:
import tensorflow as tf
self.session = tf.get_default_graph(), \
tf.keras.backend.get_session()
@ -294,11 +309,6 @@ class Interface:
config = self.get_config_file()
config["share_url"] = share_url
<<<<<<< HEAD
config["title"] = title
config["description"] = description
=======
>>>>>>> 2bd16c2f9c360c98583b94e2f6a6ea7259a98217
networking.set_config(config, output_directory)
return httpd, path_to_local_server, share_url

View File

@ -1,11 +1,7 @@
function gradio(config, fn, target) {
target = $(target);
target.html(`
<<<<<<< HEAD
<div class="panels container">
=======
<div class="panels">
>>>>>>> 2bd16c2f9c360c98583b94e2f6a6ea7259a98217
<div class="panel input_panel">
<div class="input_interfaces">
</div>
@ -30,7 +26,7 @@ function gradio(config, fn, target) {
let input_to_object_map = {
"csv" : {},
"imagein" : image_input,
"image" : image_input,
"sketchpad" : sketchpad_input,
"textbox" : textbox_input,
"webcam" : webcam,

Binary file not shown.

View File

@ -1,6 +1,6 @@
Metadata-Version: 1.0
Name: gradio
Version: 0.9.2
Version: 0.9.3
Summary: Python library for easily interacting with trained machine learning models
Home-page: https://github.com/abidlabs/gradio
Author: Abubakar Abid

View File

@ -5,7 +5,7 @@ except ImportError:
setup(
name='gradio',
version='0.9.2',
version='0.9.3',
include_package_data=True,
description='Python library for easily interacting with trained machine learning models',
author='Abubakar Abid',