mirror of
https://github.com/gradio-app/gradio.git
synced 2024-11-27 01:40:20 +08:00
Fix broken spaces in docs (#3698)
* fix examples in sentence_builder * fix sklearn error in titanic demo * regenerate notebooks * changelgo
This commit is contained in:
parent
f73155ed42
commit
3aa189c678
@ -23,6 +23,7 @@
|
||||
- Fixed bug in Serializer ValueError text by [@osanseviero](https://github.com/osanseviero) in [PR 3669](https://github.com/gradio-app/gradio/pull/3669)
|
||||
- Fix default parameter argument and `gr.Progress` used in same function, by [@space-nuko](https://github.com/space-nuko) in [PR 3671](https://github.com/gradio-app/gradio/pull/3671)
|
||||
- Hide `Remove All` button in `gr.Dropdown` single-select mode by [@space-nuko](https://github.com/space-nuko) in [PR 3678](https://github.com/gradio-app/gradio/pull/3678)
|
||||
- Fix broken spaces in docs by [@aliabd](https://github.com/aliabd) in [PR 3698](https://github.com/gradio-app/gradio/pull/3698)
|
||||
- Fix items in `gr.Dropdown` besides the selected item receiving a checkmark, by [@space-nuko](https://github.com/space-nuko) in [PR 3644](https://github.com/gradio-app/gradio/pull/3644)
|
||||
|
||||
## Documentation Changes:
|
||||
|
@ -1 +1 @@
|
||||
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: sentence_builder"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "\n", "def sentence_builder(quantity, animal, countries, place, activity_list, morning):\n", " return f\"\"\"The {quantity} {animal}s from {\" and \".join(countries)} went to the {place} where they {\" and \".join(activity_list)} until the {\"morning\" if morning else \"night\"}\"\"\"\n", "\n", "\n", "demo = gr.Interface(\n", " sentence_builder,\n", " [\n", " gr.Slider(2, 20, value=4, label=\"Count\", info=\"Choose betwen 2 and 20\"),\n", " gr.Dropdown(\n", " [\"cat\", \"dog\", \"bird\"], label=\"Animal\", info=\"Will add more animals later!\"\n", " ),\n", " gr.CheckboxGroup([\"USA\", \"Japan\", \"Pakistan\"], label=\"Countries\", info=\"Where are they from?\"),\n", " gr.Radio([\"park\", \"zoo\", \"road\"], label=\"Location\", info=\"Where did they go?\"),\n", " gr.Dropdown(\n", " [\"ran\", \"swam\", \"ate\", \"slept\"], value=[\"swam\", \"slept\"], multiselect=True, label=\"Activity\", info=\"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed auctor, nisl eget ultricies aliquam, nunc nisl aliquet nunc, eget aliquam nisl nunc vel nisl.\"\n", " ),\n", " gr.Checkbox(label=\"Morning\", info=\"Did they do it in the morning?\"),\n", " ],\n", " \"text\",\n", " examples=[\n", " [2, \"cat\", \"park\", [\"ran\", \"swam\"], True],\n", " [4, \"dog\", \"zoo\", [\"ate\", \"swam\"], False],\n", " [10, \"bird\", \"road\", [\"ran\"], False],\n", " [8, \"cat\", \"zoo\", [\"ate\"], True],\n", " ],\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
||||
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: sentence_builder"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "\n", "def sentence_builder(quantity, animal, countries, place, activity_list, morning):\n", " return f\"\"\"The {quantity} {animal}s from {\" and \".join(countries)} went to the {place} where they {\" and \".join(activity_list)} until the {\"morning\" if morning else \"night\"}\"\"\"\n", "\n", "\n", "demo = gr.Interface(\n", " sentence_builder,\n", " [\n", " gr.Slider(2, 20, value=4, label=\"Count\", info=\"Choose betwen 2 and 20\"),\n", " gr.Dropdown(\n", " [\"cat\", \"dog\", \"bird\"], label=\"Animal\", info=\"Will add more animals later!\"\n", " ),\n", " gr.CheckboxGroup([\"USA\", \"Japan\", \"Pakistan\"], label=\"Countries\", info=\"Where are they from?\"),\n", " gr.Radio([\"park\", \"zoo\", \"road\"], label=\"Location\", info=\"Where did they go?\"),\n", " gr.Dropdown(\n", " [\"ran\", \"swam\", \"ate\", \"slept\"], value=[\"swam\", \"slept\"], multiselect=True, label=\"Activity\", info=\"Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed auctor, nisl eget ultricies aliquam, nunc nisl aliquet nunc, eget aliquam nisl nunc vel nisl.\"\n", " ),\n", " gr.Checkbox(label=\"Morning\", info=\"Did they do it in the morning?\"),\n", " ],\n", " \"text\",\n", " examples=[\n", " [2, \"cat\", [\"Japan\", \"Pakistan\"], \"park\", [\"ate\", \"swam\"], True],\n", " [4, \"dog\", [\"Japan\"], \"zoo\", [\"ate\", \"swam\"], False],\n", " [10, \"bird\", [\"USA\", \"Pakistan\"], \"road\", [\"ran\"], False],\n", " [8, \"cat\", [\"Pakistan\"], \"zoo\", [\"ate\"], True],\n", " ]\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
@ -21,11 +21,11 @@ demo = gr.Interface(
|
||||
],
|
||||
"text",
|
||||
examples=[
|
||||
[2, "cat", "park", ["ran", "swam"], True],
|
||||
[4, "dog", "zoo", ["ate", "swam"], False],
|
||||
[10, "bird", "road", ["ran"], False],
|
||||
[8, "cat", "zoo", ["ate"], True],
|
||||
],
|
||||
[2, "cat", ["Japan", "Pakistan"], "park", ["ate", "swam"], True],
|
||||
[4, "dog", ["Japan"], "zoo", ["ate", "swam"], False],
|
||||
[10, "bird", ["USA", "Pakistan"], "road", ["ran"], False],
|
||||
[8, "cat", ["Pakistan"], "zoo", ["ate"], True],
|
||||
]
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -1 +1 @@
|
||||
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: titanic_survival"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio scikit-learn numpy pandas"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/titanic.csv https://github.com/gradio-app/gradio/raw/main/demo/titanic_survival/files/titanic.csv"]}, {"cell_type": "code", "execution_count": null, "id": 44380577570523278879349135829904343037, "metadata": {}, "outputs": [], "source": ["import os\n", "\n", "import pandas as pd\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.model_selection import train_test_split\n", "\n", "import gradio as gr\n", "\n", "current_dir = os.path.dirname(os.path.realpath(__file__))\n", "data = pd.read_csv(os.path.join(current_dir, \"files/titanic.csv\"))\n", "\n", "\n", "def encode_age(df):\n", " df.Age = df.Age.fillna(-0.5)\n", " bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)\n", " categories = pd.cut(df.Age, bins, labels=False)\n", " df.Age = categories\n", " return df\n", "\n", "\n", "def encode_fare(df):\n", " df.Fare = df.Fare.fillna(-0.5)\n", " bins = (-1, 0, 8, 15, 31, 1000)\n", " categories = pd.cut(df.Fare, bins, labels=False)\n", " df.Fare = categories\n", " return df\n", "\n", "\n", "def encode_df(df):\n", " df = encode_age(df)\n", " df = encode_fare(df)\n", " sex_mapping = {\"male\": 0, \"female\": 1}\n", " df = df.replace({\"Sex\": sex_mapping})\n", " embark_mapping = {\"S\": 1, \"C\": 2, \"Q\": 3}\n", " df = df.replace({\"Embarked\": embark_mapping})\n", " df.Embarked = df.Embarked.fillna(0)\n", " df[\"Company\"] = 0\n", " df.loc[(df[\"SibSp\"] > 0), \"Company\"] = 1\n", " df.loc[(df[\"Parch\"] > 0), \"Company\"] = 2\n", " df.loc[(df[\"SibSp\"] > 0) & (df[\"Parch\"] > 0), \"Company\"] = 3\n", " df = df[\n", " [\n", " \"PassengerId\",\n", " \"Pclass\",\n", " \"Sex\",\n", " \"Age\",\n", " \"Fare\",\n", " \"Embarked\",\n", " \"Company\",\n", " \"Survived\",\n", " ]\n", " ]\n", " return df\n", "\n", "\n", "train = encode_df(data)\n", "\n", "X_all = train.drop([\"Survived\", \"PassengerId\"], axis=1)\n", "y_all = train[\"Survived\"]\n", "\n", "num_test = 0.20\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X_all, y_all, test_size=num_test, random_state=23\n", ")\n", "\n", "clf = RandomForestClassifier()\n", "clf.fit(X_train, y_train)\n", "predictions = clf.predict(X_test)\n", "\n", "\n", "def predict_survival(passenger_class, is_male, age, company, fare, embark_point):\n", " if passenger_class is None or embark_point is None:\n", " return None\n", " df = pd.DataFrame.from_dict(\n", " {\n", " \"Pclass\": [passenger_class + 1],\n", " \"Sex\": [0 if is_male else 1],\n", " \"Age\": [age],\n", " \"Company\": [\n", " (1 if \"Sibling\" in company else 0) + (2 if \"Child\" in company else 0)\n", " ],\n", " \"Fare\": [fare],\n", " \"Embarked\": [embark_point + 1],\n", " }\n", " )\n", " df = encode_age(df)\n", " df = encode_fare(df)\n", " pred = clf.predict_proba(df)[0]\n", " return {\"Perishes\": float(pred[0]), \"Survives\": float(pred[1])}\n", "\n", "\n", "demo = gr.Interface(\n", " predict_survival,\n", " [\n", " gr.Dropdown([\"first\", \"second\", \"third\"], type=\"index\"),\n", " \"checkbox\",\n", " gr.Slider(0, 80, value=25),\n", " gr.CheckboxGroup([\"Sibling\", \"Child\"], label=\"Travelling with (select all)\"),\n", " gr.Number(value=20),\n", " gr.Radio([\"S\", \"C\", \"Q\"], type=\"index\"),\n", " ],\n", " \"label\",\n", " examples=[\n", " [\"first\", True, 30, [], 50, \"S\"],\n", " [\"second\", False, 40, [\"Sibling\", \"Child\"], 10, \"Q\"],\n", " [\"third\", True, 30, [\"Child\"], 20, \"S\"],\n", " ],\n", " interpretation=\"default\",\n", " live=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
||||
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: titanic_survival"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio scikit-learn numpy pandas"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "os.mkdir('files')\n", "!wget -q -O files/titanic.csv https://github.com/gradio-app/gradio/raw/main/demo/titanic_survival/files/titanic.csv"]}, {"cell_type": "code", "execution_count": null, "id": 44380577570523278879349135829904343037, "metadata": {}, "outputs": [], "source": ["import os\n", "\n", "import pandas as pd\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.model_selection import train_test_split\n", "\n", "import gradio as gr\n", "\n", "current_dir = os.path.dirname(os.path.realpath(__file__))\n", "data = pd.read_csv(os.path.join(current_dir, \"files/titanic.csv\"))\n", "\n", "\n", "def encode_age(df):\n", " df.Age = df.Age.fillna(-0.5)\n", " bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)\n", " categories = pd.cut(df.Age, bins, labels=False)\n", " df.Age = categories\n", " return df\n", "\n", "\n", "def encode_fare(df):\n", " df.Fare = df.Fare.fillna(-0.5)\n", " bins = (-1, 0, 8, 15, 31, 1000)\n", " categories = pd.cut(df.Fare, bins, labels=False)\n", " df.Fare = categories\n", " return df\n", "\n", "\n", "def encode_df(df):\n", " df = encode_age(df)\n", " df = encode_fare(df)\n", " sex_mapping = {\"male\": 0, \"female\": 1}\n", " df = df.replace({\"Sex\": sex_mapping})\n", " embark_mapping = {\"S\": 1, \"C\": 2, \"Q\": 3}\n", " df = df.replace({\"Embarked\": embark_mapping})\n", " df.Embarked = df.Embarked.fillna(0)\n", " df[\"Company\"] = 0\n", " df.loc[(df[\"SibSp\"] > 0), \"Company\"] = 1\n", " df.loc[(df[\"Parch\"] > 0), \"Company\"] = 2\n", " df.loc[(df[\"SibSp\"] > 0) & (df[\"Parch\"] > 0), \"Company\"] = 3\n", " df = df[\n", " [\n", " \"PassengerId\",\n", " \"Pclass\",\n", " \"Sex\",\n", " \"Age\",\n", " \"Fare\",\n", " \"Embarked\",\n", " \"Company\",\n", " \"Survived\",\n", " ]\n", " ]\n", " return df\n", "\n", "\n", "train = encode_df(data)\n", "\n", "X_all = train.drop([\"Survived\", \"PassengerId\"], axis=1)\n", "y_all = train[\"Survived\"]\n", "\n", "num_test = 0.20\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " X_all, y_all, test_size=num_test, random_state=23\n", ")\n", "\n", "clf = RandomForestClassifier()\n", "clf.fit(X_train, y_train)\n", "predictions = clf.predict(X_test)\n", "\n", "\n", "def predict_survival(passenger_class, is_male, age, company, fare, embark_point):\n", " if passenger_class is None or embark_point is None:\n", " return None\n", " df = pd.DataFrame.from_dict(\n", " {\n", " \"Pclass\": [passenger_class + 1],\n", " \"Sex\": [0 if is_male else 1],\n", " \"Age\": [age],\n", " \"Fare\": [fare],\n", " \"Embarked\": [embark_point + 1],\n", " \"Company\": [\n", " (1 if \"Sibling\" in company else 0) + (2 if \"Child\" in company else 0)\n", " ]\n", " }\n", " )\n", " df = encode_age(df)\n", " df = encode_fare(df)\n", " pred = clf.predict_proba(df)[0]\n", " return {\"Perishes\": float(pred[0]), \"Survives\": float(pred[1])}\n", "\n", "\n", "demo = gr.Interface(\n", " predict_survival,\n", " [\n", " gr.Dropdown([\"first\", \"second\", \"third\"], type=\"index\"),\n", " \"checkbox\",\n", " gr.Slider(0, 80, value=25),\n", " gr.CheckboxGroup([\"Sibling\", \"Child\"], label=\"Travelling with (select all)\"),\n", " gr.Number(value=20),\n", " gr.Radio([\"S\", \"C\", \"Q\"], type=\"index\"),\n", " ],\n", " \"label\",\n", " examples=[\n", " [\"first\", True, 30, [], 50, \"S\"],\n", " [\"second\", False, 40, [\"Sibling\", \"Child\"], 10, \"Q\"],\n", " [\"third\", True, 30, [\"Child\"], 20, \"S\"],\n", " ],\n", " interpretation=\"default\",\n", " live=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
@ -76,11 +76,11 @@ def predict_survival(passenger_class, is_male, age, company, fare, embark_point)
|
||||
"Pclass": [passenger_class + 1],
|
||||
"Sex": [0 if is_male else 1],
|
||||
"Age": [age],
|
||||
"Company": [
|
||||
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
|
||||
],
|
||||
"Fare": [fare],
|
||||
"Embarked": [embark_point + 1],
|
||||
"Company": [
|
||||
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
|
||||
]
|
||||
}
|
||||
)
|
||||
df = encode_age(df)
|
||||
|
Loading…
Reference in New Issue
Block a user