mirror of
https://github.com/gradio-app/gradio.git
synced 2024-11-27 01:40:20 +08:00
Fix invalid wav file error when converting from microphone to file (#1987)
* ;q :wq * Add demo * Add unit test * Fix test * Slight refactor * Lint * Delete some recordings - import module not method
This commit is contained in:
parent
c49a4264df
commit
393c1f47d5
2
demo/unispeech-speaker-verification/requirements.txt
Normal file
2
demo/unispeech-speaker-verification/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
git+https://github.com/huggingface/transformers
|
||||
torchaudio
|
120
demo/unispeech-speaker-verification/run.py
Normal file
120
demo/unispeech-speaker-verification/run.py
Normal file
@ -0,0 +1,120 @@
|
||||
import gradio as gr
|
||||
import torch
|
||||
from torchaudio.sox_effects import apply_effects_file
|
||||
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
STYLE = """
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
|
||||
"""
|
||||
OUTPUT_OK = (
|
||||
STYLE
|
||||
+ """
|
||||
<div class="container">
|
||||
<div class="row"><h1 style="text-align: center">The speakers are</h1></div>
|
||||
<div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
|
||||
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
||||
<div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
|
||||
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
|
||||
</div>
|
||||
"""
|
||||
)
|
||||
OUTPUT_FAIL = (
|
||||
STYLE
|
||||
+ """
|
||||
<div class="container">
|
||||
<div class="row"><h1 style="text-align: center">The speakers are</h1></div>
|
||||
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
|
||||
<div class="row"><h1 style="text-align: center">similar</h1></div>
|
||||
<div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
|
||||
<div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
|
||||
</div>
|
||||
"""
|
||||
)
|
||||
|
||||
EFFECTS = [
|
||||
["remix", "-"],
|
||||
["channels", "1"],
|
||||
["rate", "16000"],
|
||||
["gain", "-1.0"],
|
||||
["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
|
||||
["trim", "0", "10"],
|
||||
]
|
||||
|
||||
THRESHOLD = 0.85
|
||||
|
||||
model_name = "microsoft/unispeech-sat-base-plus-sv"
|
||||
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
||||
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device)
|
||||
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
|
||||
|
||||
|
||||
def similarity_fn(path1, path2):
|
||||
if not (path1 and path2):
|
||||
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
|
||||
wav1, _ = apply_effects_file(path1, EFFECTS)
|
||||
wav2, _ = apply_effects_file(path2, EFFECTS)
|
||||
print(wav1.shape, wav2.shape)
|
||||
|
||||
input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
||||
input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
emb1 = model(input1).embeddings
|
||||
emb2 = model(input2).embeddings
|
||||
emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu()
|
||||
emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu()
|
||||
similarity = cosine_sim(emb1, emb2).numpy()[0]
|
||||
|
||||
if similarity >= THRESHOLD:
|
||||
output = OUTPUT_OK.format(similarity * 100)
|
||||
else:
|
||||
output = OUTPUT_FAIL.format(similarity * 100)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
inputs = [
|
||||
gr.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
|
||||
gr.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
|
||||
]
|
||||
output = gr.HTML(label="")
|
||||
|
||||
|
||||
description = (
|
||||
"This demo will compare two speech samples and determine if they are from the same speaker. "
|
||||
"Try it with your own voice!"
|
||||
)
|
||||
article = (
|
||||
"<p style='text-align: center'>"
|
||||
"<a href='https://huggingface.co/microsoft/unispeech-sat-large-sv' target='_blank'>🎙️ Learn more about UniSpeech-SAT</a> | "
|
||||
"<a href='https://arxiv.org/abs/2110.05752' target='_blank'>📚 UniSpeech-SAT paper</a> | "
|
||||
"<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>📚 X-Vector paper</a>"
|
||||
"</p>"
|
||||
)
|
||||
examples = [
|
||||
["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"],
|
||||
["samples/cate_blanch.mp3", "samples/cate_blanch_3.mp3"],
|
||||
["samples/cate_blanch_2.mp3", "samples/cate_blanch_3.mp3"],
|
||||
["samples/heath_ledger.mp3", "samples/heath_ledger_2.mp3"],
|
||||
["samples/cate_blanch.mp3", "samples/kirsten_dunst.wav"],
|
||||
]
|
||||
|
||||
demo = gr.Interface(
|
||||
fn=similarity_fn,
|
||||
inputs=inputs,
|
||||
outputs=output,
|
||||
title="Voice Authentication with UniSpeech-SAT + X-Vectors",
|
||||
description=description,
|
||||
article=article,
|
||||
layout="horizontal",
|
||||
theme="huggingface",
|
||||
allow_flagging="never",
|
||||
live=False,
|
||||
examples=examples,
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
BIN
demo/unispeech-speaker-verification/samples/cate_blanch.mp3
Normal file
BIN
demo/unispeech-speaker-verification/samples/cate_blanch.mp3
Normal file
Binary file not shown.
BIN
demo/unispeech-speaker-verification/samples/cate_blanch_2.mp3
Normal file
BIN
demo/unispeech-speaker-verification/samples/cate_blanch_2.mp3
Normal file
Binary file not shown.
BIN
demo/unispeech-speaker-verification/samples/cate_blanch_3.mp3
Normal file
BIN
demo/unispeech-speaker-verification/samples/cate_blanch_3.mp3
Normal file
Binary file not shown.
BIN
demo/unispeech-speaker-verification/samples/heath_ledger.mp3
Normal file
BIN
demo/unispeech-speaker-verification/samples/heath_ledger.mp3
Normal file
Binary file not shown.
BIN
demo/unispeech-speaker-verification/samples/heath_ledger_2.mp3
Normal file
BIN
demo/unispeech-speaker-verification/samples/heath_ledger_2.mp3
Normal file
Binary file not shown.
BIN
demo/unispeech-speaker-verification/samples/kirsten_dunst.wav
Normal file
BIN
demo/unispeech-speaker-verification/samples/kirsten_dunst.wav
Normal file
Binary file not shown.
@ -2079,20 +2079,20 @@ class Audio(Changeable, Clearable, Playable, Streamable, IOComponent):
|
||||
file_obj = processing_utils.decode_base64_to_file(
|
||||
file_data, file_path=file_name
|
||||
)
|
||||
if crop_min != 0 or crop_max != 100:
|
||||
sample_rate, data = processing_utils.audio_from_file(
|
||||
file_obj.name, crop_min=crop_min, crop_max=crop_max
|
||||
)
|
||||
sample_rate, data = processing_utils.audio_from_file(
|
||||
file_obj.name, crop_min=crop_min, crop_max=crop_max
|
||||
)
|
||||
if self.type == "numpy":
|
||||
return sample_rate, data
|
||||
elif self.type in ["file", "filepath"]:
|
||||
processing_utils.audio_to_file(sample_rate, data, file_obj.name)
|
||||
if self.type == "file":
|
||||
warnings.warn(
|
||||
"The 'file' type has been deprecated. Set parameter 'type' to 'filepath' instead.",
|
||||
)
|
||||
return file_obj
|
||||
elif self.type == "filepath":
|
||||
return file_obj.name
|
||||
elif self.type == "numpy":
|
||||
return processing_utils.audio_from_file(file_obj.name)
|
||||
if self.type == "file":
|
||||
warnings.warn(
|
||||
"The 'file' type has been deprecated. Set parameter 'type' to 'filepath' instead.",
|
||||
)
|
||||
return file_obj
|
||||
else:
|
||||
return file_obj.name
|
||||
else:
|
||||
raise ValueError(
|
||||
"Unknown type: "
|
||||
|
File diff suppressed because one or more lines are too long
@ -12,6 +12,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import PIL
|
||||
import pytest
|
||||
from scipy.io import wavfile
|
||||
|
||||
import gradio as gr
|
||||
from gradio import media_data
|
||||
@ -1902,5 +1903,12 @@ def test_dataframe_postprocess_only_dates():
|
||||
}
|
||||
|
||||
|
||||
def test_audio_preprocess_can_be_read_by_scipy():
|
||||
x_wav = deepcopy(media_data.BASE64_MICROPHONE)
|
||||
audio_input = gr.Audio(type="filepath")
|
||||
output = audio_input.preprocess(x_wav)
|
||||
wavfile.read(output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user