diff --git a/build/lib/gradio/inputs.py b/build/lib/gradio/inputs.py index be2f6b61f7..b4e8b35961 100644 --- a/build/lib/gradio/inputs.py +++ b/build/lib/gradio/inputs.py @@ -15,17 +15,19 @@ import base64 import numpy as np import PIL import scipy.io.wavfile -from gradio import processing_utils +from gradio import processing_utils, test_data import pandas as pd import math import tempfile + class InputComponent(Component): """ Input Component. All input components subclass this. """ pass + class Textbox(InputComponent): """ Component creates a textbox for user to enter input. Provides a string (or number is `type` is "float") as an argument to the wrapped function. @@ -33,7 +35,7 @@ class Textbox(InputComponent): """ def __init__(self, lines=1, placeholder=None, default=None, numeric=False, type="str", label=None): - ''' + """ Parameters: lines (int): number of line rows to provide in textarea. placeholder (str): placeholder hint to provide behind textarea. @@ -41,7 +43,7 @@ class Textbox(InputComponent): numeric (bool): DEPRECATED. Whether the input should be parsed as a number instead of a string. type (str): Type of value to be returned by component. "str" returns a string, "number" returns a float value. label (str): component name in interface. - ''' + """ self.lines = lines self.placeholder = placeholder self.default = default @@ -50,6 +52,13 @@ class Textbox(InputComponent): self.type = "number" else: self.type = type + if default is None: + self.test_input = { + "str": "the quick brown fox jumped over the lazy dog", + "number": 786.92, + }[type] + else: + self.test_input = default super().__init__(label) def get_template_context(self): @@ -77,7 +86,6 @@ class Textbox(InputComponent): raise ValueError("Unknown type: " + self.type + ". Please choose from: 'str', 'number'.") - class Slider(InputComponent): """ Component creates a slider that ranges from `minimum` to `maximum`. Provides a number as an argument to the wrapped function. @@ -101,6 +109,7 @@ class Slider(InputComponent): step = 10 ** power self.step = step self.default = minimum if default is None else default + self.test_input = self.default super().__init__(label) def get_template_context(self): @@ -126,10 +135,11 @@ class Checkbox(InputComponent): """ def __init__(self, label=None): - ''' + """ Parameters: label (str): component name in interface. - ''' + """ + self.test_input = True super().__init__(label) @classmethod @@ -154,6 +164,7 @@ class CheckboxGroup(InputComponent): ''' self.choices = choices self.type = type + self.test_input = self.choices super().__init__(label) def get_template_context(self): @@ -186,6 +197,7 @@ class Radio(InputComponent): ''' self.choices = choices self.type = type + self.test_input = self.choices[0] super().__init__(label) def get_template_context(self): @@ -202,6 +214,7 @@ class Radio(InputComponent): else: raise ValueError("Unknown type: " + self.type + ". Please choose from: 'value', 'index'.") + class Dropdown(InputComponent): """ Component creates a dropdown of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function. @@ -217,6 +230,7 @@ class Dropdown(InputComponent): ''' self.choices = choices self.type = type + self.test_input = self.choices[0] super().__init__(label) def get_template_context(self): @@ -248,7 +262,7 @@ class Image(InputComponent): invert_colors (bool): whether to invert the image as a preprocessing step. source (str): Source of image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "canvas" defaults to a white image that can be edited and drawn upon with tools. tool (str): Tools used for editing. "editor" allows a full screen editor, "select" provides a cropping and zoom tool. - type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3), "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name. + type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3) and values from 0 to 255, "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name. label (str): component name in interface. ''' self.shape = shape @@ -257,6 +271,7 @@ class Image(InputComponent): self.tool = tool self.type = type self.invert_colors = invert_colors + self.test_input = test_data.BASE64_IMAGE super().__init__(label) @classmethod @@ -293,6 +308,8 @@ class Image(InputComponent): file_obj = tempfile.NamedTemporaryFile() im.save(file_obj.name) return file_obj + else: + raise ValueError("Unknown type: " + self.type + ". Please choose from: 'numpy', 'pil', 'file'.") def rebuild(self, dir, data): """ @@ -312,14 +329,15 @@ class Audio(InputComponent): """ def __init__(self, source="upload", type="numpy", label=None): - ''' + """ Parameters: source (str): Source of audio. "upload" creates a box where user can drop an audio file, "microphone" creates a microphone input. type (str): Type of value to be returned by component. "numpy" returns a 2-set tuple with an integer sample_rate and the data numpy.array of shape (samples, 2), "file" returns a temporary file object whose path can be retrieved by file_obj.name, "mfcc" returns the mfcc coefficients of the input audio. label (str): component name in interface. - ''' + """ self.source = source self.type = type + self.test_input = test_data.BASE64_AUDIO super().__init__(label) def get_template_context(self): @@ -361,6 +379,7 @@ class File(InputComponent): label (str): component name in interface. ''' self.type = type + self.test_input = None super().__init__(label) @classmethod @@ -385,7 +404,7 @@ class Dataframe(InputComponent): """ def __init__(self, headers=None, row_count=3, col_count=3, datatype="str", type="pandas", label=None): - ''' + """ Parameters: headers (List[str]): Header names to dataframe. row_count (int): Limit number of rows for input. @@ -393,14 +412,17 @@ class Dataframe(InputComponent): datatype (Union[str, List[str]]): Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", and "date". type (str): Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array. label (str): component name in interface. - ''' + """ self.headers = headers self.datatype = datatype self.row_count = row_count self.col_count = len(headers) if headers else col_count self.type = type - super().__init__(label) + sample_values = {"str": "abc", "number": 786, "bool": True, "date": "02/08/1993"} + column_dtypes = [datatype]*self.col_count if isinstance(datatype, str) else datatype + self.test_input = [[sample_values[c] for c in column_dtypes] for _ in range(row_count)] + super().__init__(label) def get_template_context(self): return { diff --git a/build/lib/gradio/interface.py b/build/lib/gradio/interface.py index 2a5140737c..d83d2de2cc 100644 --- a/build/lib/gradio/interface.py +++ b/build/lib/gradio/interface.py @@ -193,19 +193,19 @@ class Interface: return config - def process(self, raw_input): + def process(self, raw_input, predict_fn=None): """ :param raw_input: a list of raw inputs to process and apply the prediction(s) on. + :param predict_fn: which function to process. If not provided, all of the model functions are used. :return: processed output: a list of processed outputs to return as the prediction(s). duration: a list of time deltas measuring inference time for each prediction fn. """ - processed_input = [input_interface.preprocess( - raw_input[i]) for i, input_interface in - enumerate(self.input_interfaces)] + processed_input = [input_interface.preprocess(raw_input[i]) + for i, input_interface in enumerate(self.input_interfaces)] predictions = [] durations = [] for predict_fn in self.predict: @@ -253,6 +253,22 @@ class Interface: thread.keep_running = False networking.url_ok(path_to_local_server) + def test_launch(self): + for predict_fn in self.predict: + print("Test launching: {}()...".format(predict_fn.__name__), end=' ') + + raw_input = [] + for input_interface in self.input_interfaces: + if input_interface.test_input is None: # If no test input is defined for that input interface + print("SKIPPED") + break + else: # If a test input is defined for each interface object + raw_input.append(input_interface.test_input) + else: + self.process(raw_input) + print("PASSED") + continue + def launch(self, inline=None, inbrowser=None, share=False, debug=False): """ Parameters @@ -326,6 +342,8 @@ class Interface: if self.verbose: print(strings.en["COLAB_NO_LOCAL"]) else: # If it's not a colab notebook and share=False, print a message telling them about the share option. + print("To get a public link for a hosted model, " + "set Share=True") if self.verbose: print(strings.en["PUBLIC_SHARE_TRUE"]) share_url = None @@ -345,10 +363,10 @@ class Interface: # with the interface. if inline: from IPython.display import IFrame, display - if (is_colab): - # Embed the remote interface page if on google colab; - # otherwise, embed the local page. - print("Interface loading below...") + # Embed the remote interface page if on google colab; + # otherwise, embed the local page. + print("Interface loading below...") + if share: while not networking.url_ok(share_url): time.sleep(1) display(IFrame(share_url, width=1000, height=500)) diff --git a/build/lib/gradio/processing_utils.py b/build/lib/gradio/processing_utils.py index 6850c04aa3..1e4fba54d2 100644 --- a/build/lib/gradio/processing_utils.py +++ b/build/lib/gradio/processing_utils.py @@ -32,7 +32,6 @@ def encode_plot_to_base64(plt): with BytesIO() as output_bytes: plt.savefig(output_bytes, format="png") bytes_data = output_bytes.getvalue() - plt.close() base64_str = str(base64.b64encode(bytes_data), 'utf-8') return "data:image/png;base64," + base64_str diff --git a/build/lib/gradio/test_data.py b/build/lib/gradio/test_data.py new file mode 100644 index 0000000000..e157d43790 --- /dev/null +++ b/build/lib/gradio/test_data.py @@ -0,0 +1,2 @@ +BASE64_IMAGE = "" +BASE64_AUDIO = "data:audio/ogg;base64,T2dnUwACAAAAAAAAAADSeWyXAAAAAHTSMw8BHgF2b3JiaXMAAAAAAkSsAAD/////APQBAP////+4AU9nZ1MAAAAAAAAAAAAA0nlslwEAAACM6FVoEkD/////////////////////PAN2b3JiaXMNAAAATGF2ZjU2LjIzLjEwNgEAAAAfAAAAZW5jb2Rlcj1MYXZjNTYuMjYuMTAwIGxpYnZvcmJpcwEFdm9yYmlzKUJDVgEACAAAgCJMGMSA0JBVAAAQAACgrDeWe8i99957gahHFHuIvffee+OsR9B6iLn33nvuvacae8u9995zIDRkFQAABACAKQiacuBC6r33HhnmEVEaKse99x4ZhYkwlBmFPZXaWushk9xC6j3nHggNWQUAAAIAQAghhBRSSCGFFFJIIYUUUkgppZhiiimmmGLKKaccc8wxxyCDDjropJNQQgkppFBKKqmklFJKLdZac+69B91z70H4IIQQQgghhBBCCCGEEEIIQkNWAQAgAAAEQgghZBBCCCGEFFJIIaaYYsopp4DQkFUAACAAgAAAAABJkRTLsRzN0RzN8RzPESVREiXRMi3TUjVTMz1VVEXVVFVXVV1dd23Vdm3Vlm3XVm3Vdm3VVm1Ztm3btm3btm3btm3btm3btm0gNGQVACABAKAjOZIjKZIiKZLjOJIEhIasAgBkAAAEAKAoiuM4juRIjiVpkmZ5lmeJmqiZmuipngqEhqwCAAABAAQAAAAAAOB4iud4jmd5kud4jmd5mqdpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpQGjIKgBAAgBAx3Ecx3Ecx3EcR3IkBwgNWQUAyAAACABAUiTHcixHczTHczxHdETHdEzJlFTJtVwLCA1ZBQAAAgAIAAAAAABAEyxFUzzHkzzPEzXP0zTNE01RNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE1TFIHQkFUAAAQAACGdZpZqgAgzkGEgNGQVAIAAAAAYoQhDDAgNWQUAAAQAAIih5CCa0JrzzTkOmuWgqRSb08GJVJsnuamYm3POOeecbM4Z45xzzinKmcWgmdCac85JDJqloJnQmnPOeRKbB62p0ppzzhnnnA7GGWGcc85p0poHqdlYm3POWdCa5qi5FJtzzomUmye1uVSbc84555xzzjnnnHPOqV6czsE54Zxzzonam2u5CV2cc875ZJzuzQnhnHPOOeecc84555xzzglCQ1YBAEAAAARh2BjGnYIgfY4GYhQhpiGTHnSPDpOgMcgppB6NjkZKqYNQUhknpXSC0JBVAAAgAACEEFJIIYUUUkghhRRSSCGGGGKIIaeccgoqqKSSiirKKLPMMssss8wyy6zDzjrrsMMQQwwxtNJKLDXVVmONteaec645SGultdZaK6WUUkoppSA0ZBUAAAIAQCBkkEEGGYUUUkghhphyyimnoIIKCA1ZBQAAAgAIAAAA8CTPER3RER3RER3RER3RER3P8RxREiVREiXRMi1TMz1VVFVXdm1Zl3Xbt4Vd2HXf133f141fF4ZlWZZlWZZlWZZlWZZlWZZlCUJDVgEAIAAAAEIIIYQUUkghhZRijDHHnINOQgmB0JBVAAAgAIAAAAAAR3EUx5EcyZEkS7IkTdIszfI0T/M00RNFUTRNUxVd0RV10xZlUzZd0zVl01Vl1XZl2bZlW7d9WbZ93/d93/d93/d93/d939d1IDRkFQAgAQCgIzmSIimSIjmO40iSBISGrAIAZAAABACgKI7iOI4jSZIkWZImeZZniZqpmZ7pqaIKhIasAgAAAQAEAAAAAACgaIqnmIqniIrniI4oiZZpiZqquaJsyq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7rukBoyCoAQAIAQEdyJEdyJEVSJEVyJAcIDVkFAMgAAAgAwDEcQ1Ikx7IsTfM0T/M00RM90TM9VXRFFwgNWQUAAAIACAAAAAAAwJAMS7EczdEkUVIt1VI11VItVVQ9VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV1TRN0zSB0JCVAAAZAADDtOTScs+NoEgqR7XWklHlJMUcGoqgglZzDRU0iEmLIWIKISYxlg46ppzUGlMpGXNUc2whVIhJDTqmUikGLQhCQ1YIAKEZAA7HASTLAiRLAwAAAAAAAABJ0wDN8wDL8wAAAAAAAABA0jTA8jRA8zwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRNAzTPAzTPAwAAAAAAAADN8wBPFAFPFAEAAAAAAADA8jzAEz3AE0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxNAzTPAzTPAwAAAAAAAADL8wBPFAHPEwEAAAAAAABA8zzAE0XAE0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAABDgAAARZCoSErAoA4AQCHJEGSIEnQNIBkWdA0aBpMEyBZFjQNmgbTBAAAAAAAAAAAAEDyNGgaNA2iCJA0D5oGTYMoAgAAAAAAAAAAACBpGjQNmgZRBEiaBk2DpkEUAQAAAAAAAAAAANBME6IIUYRpAjzThChCFGGaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAIABBwCAABPKQKEhKwKAOAEAh6JYFgAAOJJjWQAA4DiSZQEAgGVZoggAAJaliSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAgAEHAIAAE8pAoSErAYAoAACHolgWcBzLAo5jWUCSLAtgWQDNA2gaQBQBgAAAgAIHAIAAGzQlFgcoNGQlABAFAOBQFMvSNFHkOJalaaLIkSxL00SRZWma55kmNM3zTBGi53mmCc/zPNOEaYqiqgJRNE0BAAAFDgAAATZoSiwOUGjISgAgJADA4TiW5Xmi6HmiaJqqynEsy/NEURRNU1VVleNolueJoiiapqqqKsvSNM8TRVE0TVVVXWia54miKJqmqrouPM/zRFEUTVNVXRee53miKIqmqaquC1EURdM0TVVVVdcFomiapqmqquq6QBRF0zRVVVVdF4iiKJqmqqqu6wLTNE1VVVXXlV2Aaaqqqrqu6wJUVVVd13VlGaCqquq6rivLANd1XdeVZVkG4Lqu68qyLAAA4MABACDACDrJqLIIG0248AAUGrIiAIgCAACMYUoxpQxjEkIKoWFMQkghZFJSKimlCkIqJZVSQUilpFIySi2lllIFIZWSSqkgpFJSKQUAgB04AIAdWAiFhqwEAPIAAAhjlGKMMeckQkox5pxzEiGlGHPOOakUY84555yUkjHnnHNOSumYc845J6VkzDnnnJNSOuecc85JKaV0zjnnpJRSQugcdFJKKZ1zDkIBAEAFDgAAATaKbE4wElRoyEoAIBUAwOA4lqVpnieKpmlJkqZ5nueJpqpqkqRpnieKpqmqPM/zRFEUTVNVeZ7niaIomqaqcl1RFEXTNE1VJcuiaIqmqaqqC9M0TdNUVdeFaZqmaaqq68K2VVVVXdd1Yduqqqqu68rAdV3XdWUZyK7ruq4sCwAAT3AAACqwYXWEk6KxwEJDVgIAGQAAhDEIKYQQUsggpBBCSCmFkAAAgAEHAIAAE8pAoSErAYBUAACAEGuttdZaaw1j1lprrbXWEuestdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbVWACB2hQPAToQNqyOcFI0FFhqyEgAIBwAAjEGIMegklFJKhRBj0ElIpbUYK4QYg1BKSq21mDznHIRSWmotxuQ55yCk1FqMMSbXQkgppZZii7G4FkIqKbXWYqzJGJVSai22GGvtxaiUSksxxhhrMMbm1FqMMdZaizE6txJLjDHGWoQRxsUWY6y11yKMEbLF0lqttQZjjLG5tdhqzbkYI4yuLbVWa80FAJg8OABAJdg4w0rSWeFocKEhKwGA3AAAAiGlGGPMOeeccw5CCKlSjDnnHIQQQgihlFJSpRhzzjkIIYRQQimlpIwx5hyEEEIIpZRSSmkpZcw5CCGEUEoppZTSUuuccxBCCKWUUkopJaXUOecghFBKKaWUUkpKLYQQQiihlFJKKaWUlFJKIYRQSimllFJKKamllEIIpZRSSimllFJSSimFEEIppZRSSimlpJRaK6WUUkoppZRSSkkttZRSKKWUUkoppZSSWkoppVJKKaWUUkopJaXUUkqllFJKKaWUUkpLqaWUSimllFJKKaWUlFJKKaVUSimllFJKKSml1FpKKaWUSimllFJaaymlllIqpZRSSimltNRaay21lEoppZRSSmmttZRSSimVUkoppZRSAADQgQMAQIARlRZipxlXHoEjChkmoEJDVgIAZAAADKOUUkktRYIipRiklkIlFXNQUooocw5SrKlCziDmJJWKMYSUg1QyB5VSzEEKIWVMKQatlRg6xpijmGoqoWMMAAAAQQAAgZAJBAqgwEAGABwgJEgBAIUFhg4RIkCMAgPj4tIGACAIkRkiEbEYJCZUA0XFdACwuMCQDwAZGhtpFxfQZYALurjrQAhBCEIQiwMoIAEHJ9zwxBuecIMTdIpKHQgAAAAAgAMAPAAAJBtAREQ0cxwdHh8gISIjJCUmJygCAAAAAOAGAB8AAEkKEBERzRxHh8cHSIjICEmJyQlKAAAggAAAAAAACCAAAQEBAAAAAIAAAAAAAQFPZ2dTAAQAWgAAAAAAANJ5bJcCAAAAgj7NLiU1/yA4MrTSmOluanqbtcPY/w//Af8U/xX/Fv8o/yL/Jv81/yYB9CSz/hJutS5S5uELBR8L66hMbCYB6MjXvbm6N4IgSjhP7Ni7XXFc7HctclM1G+vWvr5XYQAyllz7LOFFS20ZEloiGEuufZHwolJbhoIF3hCiUpFlWa1WcwKzs5mKzVXFlAZVxQoA4EWMjRg1xqiUMexaF1uDNRiGo6pYHAmCiGLHtCLBCqPGGdEuFEgYWgNIfUSbgUHqpLMkba+Ox3YcV0HntMBK9JVIkcQkGUSlqCOxiCUI1EQCkr79gl021AC+q0GQFLgfhlyTuqurXnmbGkVBatGzTAZLpKalRNAuyIBJtXMq1xe7iqbsosaOZ8DMxCHp2iMMdEPSe6vrEduzRm23HTupx70trpwqqjvluaGIERghMJ/ty3jvZxVrv+XlVmP/Oue72/1TtbvC/nyvd/l5nYY8oCEEDWpoMLQR3iIgA3DBDRh8zNrQmjpdAVYF11gRACxSpctbnjn0FqnS9S33HLjnAnBKKYQSgKkphnq9SozzuqLeoVEk8T4zztsxvp1xX7dXM0V4ay0D3JLLdolfAb8ll+0SvwJxVtaESIlT4g5grYhaY/qr42nn19PO6vHK4MjskS8tPaFwEAUaKb6EFwkP4gITiBRfwouEB3GBCRxFTrudCgB0CF0RHTqJDsPQESMEAAAAAABA1LA6WBwcHS1WmxWH2nIkABhYMtKYmRvpdXqdXqfXaCPRSDQSjUSDMDCgqnqqoNmmVi/bAv5jyoQPgkyIKv4IIwOAjMKbzAY285LMx7e3OFBeGnyiiQ1gMXJggCQCIFgpI8tMQJjXTQPQVUAzkADSgKR4JMMHQFcBYcllcFzCZOMBATgIvAN+Gd7zj+Pd1PpG28BleM8/j3cX6xsmcAOtVi+BjUeHa4m7GIahoxgLAAAAAAAOWK1qGKJWUxxV7ajdqmKgpopFTLtpYcuKWrXEigWWllhYyNGQSEBoFOCwmrfjnHF7Nr2aT7pJhkTuv4YrG2fSU92xBdyU+yw0CuTYSMQhbuoMFXMfO47je61IYyMJD1qwLQGDRGhawihYsJFu8ibHTdIL6ZLWPN+JZN1kXXPyouTnSYokvcg3ItfzpENX1l4nEK3n4KT9mbaMsm5LfNQBjswpUQC+OX6is+iveiTYkQCb4xc6ivaoR4IdCfAHAAAA4CGTYYphGAYJyAYAAAAAAAAAAACRlSYAQEhVkQiJwFBjURpZ0CiGUgiJkAjJL1aMmAMA70ggI2Vo0OAhGN0aAJnwABe6SFaABbKAxFEYrCqNIKlobWTmLiF8ljVlVu3Eb5Iwcoc+WokPNBi1DjrQKAaABSzoCwCABQAALl4ZnjZ8l29TJuywoDI8bfgu36ZM2GHBW0RmADLrmRyJySN0SAzDNWQykaoKAAAAANZaNVasGlSNtYJpFbvF0bBaxIqFqCKOBpEwjATRMKKoI0QJCBU4VOAw9tibMAiDMGi3tubO7e7NNTmxx9zN3Vx0ikgksv/q1avNnPyu7/oIbGks2ZIdra5QFrIrsyALsiALUjTu5/pycmLBzd3czUUkEolIIY+bLMiCFE0++eSTz30pkkseySOtXjCpVKp0vHTu3F6v19frJaPxkXoksq+x+5vrtYH12nApK5VK1VJeptdz9LSHalAA/hjeM1dJs9SvRnrOenw8hvfMVdIs9avhOevx8gcAAAAAAABkMshkkIBsAEAAAAAAAAAAAFFJaEkAACAlAtVAo1oWBmZojcxNTC0KAICLC0AoJOtJRV+hLA6hMrCr+g4swBCAAmUuQPkBoAEADgDeCN4zV0mz1KuQnruOj0bwkb1KmqFeBc9dj48/AAAAAAAAMAzDIBsAAAMAAAAAAAAAGiQyGgAAQCBRVGlsSU2mAlWjGmkVnQAAADQsH8saKpHAMhSManQF9A6v48auUQcAVAMAhmUugAYB3ug9Mjep61afDWPXgEbvkblJXbf4aBinHvgDAAAAAAAggWEYhmEQCAABAQAAAAAAQDZJyAYAAJAIVJWWbZoYVotI1VQaSRMkAFwA0AADQAET7osFCn25VjuXuj0W3lu14wv2AoxhYIEGDABohgVgAYADAHAOUAAHiAA+yF2zN4lrV58FY9eBQe6avUlcu/osGLse+AMAAAAAACCBYViWoSNGqBgAAAAAAIASJGQLAACAQAojVWPF5JMkFyNVaS6lBSSAhc4LAGyfCn3PVHNt7fCW67yv3kd98Hl9TM/Wsq8+ZA4vL/vLE9pMuNvRKJH/DduZWQDWGlYF+dBV+3oHVw7A0QA4TAZ3Sw6AA5A2CTTyd7P5AD6YPTI3KWsXvzW0U8eVweyRuUlZu/jVME498AcAAAAAAGAYNiWGUVUxAAAAAABQA5AtAAAgkAh8Wd3C8duyXoPEkk5vCQkgBxoATTKJhkjHW2bR03Up81cjO7FEayY18anKnBanNiTLjPvr5n2TpZDhm1prmswUMyydE6b9a7dVMwvVwqSlYn5ZscOzUNaigSRlSE4BMawVTFoOsWGJyhPaqEnjNWXUhWye/Fn/+YuW03XAYAG+d11zd8nnFp8Ndg3Yu+65m+Szi88Guwb8AQAAAAAACQzDJqYYVYkYAwAAAAAQTQmikQAAgBBInbFiIDUajQBjI0sWkAAAoH+4ODCosWuG2qOhy6pxuvGnZNUth5mD9OqfiExBT95kwWYqSQbgmaIQW1v3pt1xrK4FjKW5R3lS83aRAqp392QV0M2bJPTsoip7KGYe6f3PT3yrWsVEe5Fa1srwYl4RSfPnpW5GWmfO1pW0TiKuDvZ6O9diIMO644R0xgB+V91zV4nnVq8Bsx64q665m8R9V68Box74AwAAAGAAJLBsFVuliqoYAAAAAIBoAEpJAAAphQ1C6LTmpqYWhBBSbywMAIAMgPkAd2DYpQKqJ2m4S7RiaB3vx7iQh+ovBqp3kztJXragwdXvKfoUkHcBYvgmSO5srpyc7mR002McEgVP9cyQXZ54yHP10nLlhnWOj3b+c3vn5BeZG1AXucuTnIdlkAEbEAP6d0rd2leSard/j1k1cbWfVermjFyIzJF0kXZlGSxiQMLSNizSw51z9ZRxqCKAHAAeN30PThKWq49Gkerg2jZ9DM3/CvXRSErdGtc/AAAAACAhV42qqqQBVaIKAAAAQM0QUDIBABBSIqShYmzJVG+KomjNEFoBAIA2F8Y5SeX+8GabWefCmtzlBVUtWRBXJ0zCmTxnhoyfh5nkHR2Fo2PPHBhVTtVpNTFcSf1btS1R/QJtOpHZquwfJInrFK7LRYM1M4zrhaIr2XLPJe0q7Q2P8akOp0jyjKjN0vEjzSghnUVF6srZBhKoDz33DN3ZNN1VTD7WGENCvi+IIEEyv//81b9uyNmLvyTVN9afJ/bK7r8c2vfkAyQuSQJM8mUR4/MHrWw258zy7WqZmVB4zNESZZv2ll9icNByaECDDACeB/2VLxK7DI9J1GL6SMmD/spXSR33mhBi8sAfAAAAANhKxRTLVlJVFSMQAAAAQKkERBMAIACQUmc41Yokoi5VCK1iYGwOAAAVAMjJKjQV01d6HmogGWa3uCFhq+eAWN5qJzk1dXyzKMc7f1nNOJ3166VeTUkc3ncOhRr1d1b9dwJhfvq9h06x6asm0//pCAiqds0IzGRKSLjjooK58vqRyBnSvj89XdA4JmmoZtHSTK19OgsXFP1/mPPJMowKaLKu7BfGnU4vPEkw9difiZHxSF/zRWz/vumfdxHwdEtXU+zlwjMepYK4OZdeP3td5jGOPb0g41l/sRVUMD45AIcNPuf8ziVJnXQNEFsPzDm/81VSJzwGCBX8AQAAADCS8mArjWKbqqoqBgAAALQQAZoBACAFSIRMyFgpfup2BUBNcuc6kgUABJicAwm14jeHykz69VS8687Rr7/Xpv8kz8q2fpansrkAmTeXRKBBRGTTP+eR2/+eWys+ufGvq5Kz6SeovGvXaanow+ydO0tK9vcvuj/byqhjMqfXDqmXW4/LJGbp8Q2LS1aSSVVfp4ISCUXPrprLxNMNB9hX9y2eWVveN5OzqK/ceU4zVPbKeVrKzBoYZI0PgIQsihsTjnS07oX52c/CZnr8lUEXf2ISIfXSKxVMpKiZSHl0w63OrhOpqq0jH4B8PYs+mgMyGCFncBmqBAX+xvzKeklNhlcDsXXAG/MzVyR2wscA4YM/AAAAALKZysVJVSmpGgwqBgAAAGpGgJoBADYSABkv71JHy/nyeTluxu8rogUAaQAAqGahuSVtte9O8unS+/sM4WRRPQyXYuiO47jP15meSzmez2MRLPk8WQ9+uCCKCeO6+AJxPpMalfmCo0zP8OqcFdV8vmQyXgAHnA/jLnc2UEKF6iHffd8u/qXKrg1FDoeZ1PlqqBuQUS4UkE7qpG5czz8hk4JzevZknqgmvxdrPDJ9MSpmc56ZXYUiT65I8bt9mzEFu+fPm/vftSK3mJf0kHh52gh+Z/A5O4K1HJ++boy6mUBGpT48CoQJYqfCPaT18QGQl8JzUzOguQGelnwNRAl3wsdIEHEZ0pLPgSLxJnyMBOFX4AMAkTOaLosqom6dIgAy2WIqF1vFqKpBFQAAAFRACXLfaFS1FkEVAA6AQbXAUaIPbMqXOEsHJwSo2bw74sBSOeOnO6t6yLJLKTbW9Dq+7eq7FmbwDFf19kxh5+Yse8iuXVVvga0YhsLu+uM881wFkLymlo7jyhLPwFDcW8VVULywnqxnDOuXFTfZynuAvp1NUe9nBz0toKuyEW/j2qY1TUPVM3QuPPhUAkxnvF/nb1895wYvguSDly/z/7skF9+x326O6zyRPiq+pfsYO56YyktxS9vmelMOqbrxmSjfLjMiuLj/Tkq1BcesV4RqMhM/k3KmS2U8XJvvQRADnpZ8ZdP3IayzQcQgLfnOxs9N6GeDiMEfAAAAoMlW5UrFsklVVRUAAADIQoICAIQqQCKEh3ffbRv67SmkVMwxNJEAACgkEgoAAJZlyRHresrdNelLKA9qcx/PNJ3ROtU1edcIHoplF1VbTdx4lw51V+tctezY0w83Tynt0lPxXaeppzqPBUpXrQcHaCqmvxrorpnrCzj0/63i3n0dGIo6OdsrbCg23WRRTfdAliC1l/aBeRec9Ns6syVWQiQyBw+7S1/1oGPbPL6rRJ+hk1TTPXdxpnWu3jsvpMwDV2v/8obdH1fSdv/GfpuXVv8a+5a+bb0NjZn+Hy+3eL/lpsTMjElt7lKp74cx5lVc+J0ecZyXhNoT/nYe39WJQ/v/E0/IZm5ugw0DAJ6WfFlJ4k9aJQg1LaQl37aX+JMWA8JPFX4AAJWsBoozVAOwxVZVsZWSqqoqBgAAIGupqwr5XAUAgEQAIKVB8ZC88bpRM7quKb5O9s+zTCfVXF0oduZ71zk69ox25k73pUMdT5eK4hzwVN+U+BcVT+7GKHYzI/Yoz2ZmISly6jd1vkP2pmvSVeuH65lGY3W0L7smc7qqORON5kzFLJWmGRhltwusXDITJn2/xg/3o4bpXfOYJAf956Z5G1TVtlDDUAXP3dSMG2bf6UbeVa1QhjnMjkX1sGfiocx1A2T30SkvSs+NnG+uVPe0zfHfghTZfMfMd/bLuauitdS29qrPYlrq98+VRAa3JFZNeS8f8DTqGVFz0oqCoBDZCGv8k4C6DABelnxyUSRIegggNYwl72QREZEeKAAfAJB1yiwzyPplFahUOVdVJTooaqRKVAAAAAAAI8GxgkXMc7YKAACokmQ6KjyE+3088Jm2lr27+vTztobbIQ6fJM2Bqax5WU7gCjldlUqK3E920lD7ETV5XxllFpWjrykA3lJZ/HbRfeLUGc68fDM5tQGcFvQkEQzKaRprHEGOKJAmWg1UInLy/OkiZ7sSJ2hv591dc2Hx5AYS8tTpP8A0m+6abCb7cqfAVBL3ri7KQOdEfW05VaioH+rZbk2rziaFzkq+MZJsy1aMqX/bAoEt38jiK+l1d327Cf6SZbAtO5bRH5fPdajrdrSC0/3J6yX13CxdOpq6QgmLIgPxhviVpDp/JlPVizZfiprLzuQ6AF6WfMEkIsZdAFCWfKIiEsH1AwAfAMiYPDMzkLOnR4K+crGVq6pUFVVRAQAAAMATg33eSZLFeCsiAAAFOt1uF+0e9fCw+2Gu/Hl5uTWfjk/dzPnK6U8Qo+zJk5ycWp5u4tG87qxDROCQPhotvkmvlRcu7JxaNPKp7QU+oD2ZTHRpPFeZmd9m7nXmFGVWFk7nk0lSu+e+s4aK01NTzwvJZud8IVcPUuaeJBmginLxb9CV6zi7TkSt1DypPpNzOF0fxQkzLqiEiZre/XT3HSNUz7M8AN2aKgZq/qObRsBk6k6o8jQMaWFhB0ju7tuNvipHw3BbBrMqGbarHhP8p76l5TTW9MJZlbD/WqK9dCtuFaHuokJgwyUAsnT3/Ek0D62NFwpHZIzLrU5vDwMGtAJCQPSp54YDHpb80lXiY417JVHV1RuW/DJRwhvnQAHXfaaciym2GLoMqipGYAAAAAAHtbCxw7Z1ViuZEyOr3dm2tjRU0KDVcY13pPbj/17Eby7ncWa7f9NYtJFO9qHyTsUJCIuwDB/i6nZznn3SDaQ77+x38etxXl6PYX3mqt53gixfX7uybW6aWv3Wr1mML9W78gwwv//vbfbvf3aT9+VnV8+Az/dPA4chOD5/PoXMEgbr8j670su6TA9M1/6e05FKb9a/WXN2+zr7ZKHiurOmAdhnF4ymp4d53sWX+3bV81k37S/fv2X8ts9na/fvv//WAUjP/t40D897rS0g4V2euEnjaEM2AyWOhbYZBwWPx7sAT9xgvs3Pz9x73KxdZpq1X+yCh3uX8wCwywAO" diff --git a/demo/diff_texts.py b/demo/diff_texts.py index a75a4b46d8..b4d63f1cd8 100644 --- a/demo/diff_texts.py +++ b/demo/diff_texts.py @@ -3,13 +3,15 @@ import gradio as gr from difflib import Differ + def diff_texts(text1, text2): d = Differ() return [ (token[2:], token[0]) for token in d.compare(text1, text2) ] - -gr.Interface( + + +io = gr.Interface( diff_texts, [ gr.inputs.Textbox(lines=3, default="The quick brown fox jumped over the lazy dogs."), @@ -20,4 +22,7 @@ gr.Interface( "-": "pink", " ": "none", }) -).launch() \ No newline at end of file +) + +io.test_launch() +io.launch() diff --git a/demo/digit_classifier.py b/demo/digit_classifier.py index e2f37e1a21..2b0ed44bc3 100644 --- a/demo/digit_classifier.py +++ b/demo/digit_classifier.py @@ -2,24 +2,26 @@ import tensorflow as tf import gradio -import os -from tensorflow.keras.layers import * import gradio as gr from urllib.request import urlretrieve urlretrieve("https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5", "mnist-model.h5") model = tf.keras.models.load_model("mnist-model.h5") + def recognize_digit(image): image = image.reshape(1, -1) prediction = model.predict(image).tolist()[0] return {str(i): prediction[i] for i in range(10)} -gr.Interface( +io = gr.Interface( recognize_digit, "sketchpad", gradio.outputs.Label(num_top_classes=3), live=True, capture_session=True, -).launch() +) + +io.test_launch() +io.launch() diff --git a/demo/filter_records.py b/demo/filter_records.py index ef7998809f..6a996fef65 100644 --- a/demo/filter_records.py +++ b/demo/filter_records.py @@ -7,11 +7,14 @@ import random def filter_records(records, gender): return records[records['gender'] == gender] -gr.Interface(filter_records, +io = gr.Interface(filter_records, [ gr.inputs.Dataframe(headers=["name", "age", "gender"], datatype=["str", "number", "str"], row_count=5), gr.inputs.Dropdown(["M", "F", "O"]) ], "dataframe", description="Enter gender as 'M', 'F', or 'O' for other." -).launch() +) + +io.test_launch() +io.launch() diff --git a/demo/form_graph.py b/demo/form_graph.py new file mode 100644 index 0000000000..48eaa8fbd2 --- /dev/null +++ b/demo/form_graph.py @@ -0,0 +1,35 @@ +import gradio as gr +import random +import matplotlib.pyplot as plt +import numpy as np + + +def plot_forecast(final_year, companies, noise, show_legend, point_style): + start_year = 2020 + x = np.arange(start_year, final_year + 1) + year_count = x.shape[0] + plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style] + fig = plt.figure() + ax = fig.add_subplot(1) + for i, company in enumerate(companies): + series = np.arange(0, year_count, dtype=float) + series = series ** 2 * (i + 1) + series += np.random.rand(year_count) * noise + ax.plot(x, series, plt_format) + if show_legend: + plt.legend(companies) + return fig + + +gr.Interface(plot_forecast, + [ + gr.inputs.Radio([2025, 2030, 2035, 2040], + label="Project to:"), + gr.inputs.CheckboxGroup( + ["Google", "Microsoft", "Gradio"], label="Company Selection"), + gr.inputs.Slider(1, 100, label="Noise Level"), + gr.inputs.Checkbox(label="Show Legend"), + gr.inputs.Dropdown(["cross", "line", "circle"], label="Style"), + ], + gr.outputs.Image(plot=True, label="forecast") + ).launch() diff --git a/demo/generate_tone.py b/demo/generate_tone.py index 43c585f6d3..a2067efaee 100644 --- a/demo/generate_tone.py +++ b/demo/generate_tone.py @@ -2,10 +2,10 @@ import gradio as gr import numpy as np -import random notes = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"] + def generate_tone(note, octave, duration): sr = 48000 a4_freq, tones_from_a4 = 440, 12 * (octave - 4) + (note - 9) @@ -13,13 +13,16 @@ def generate_tone(note, octave, duration): duration = int(duration) audio = np.linspace(0, duration, duration * sr) audio = (20000 * np.sin(audio * (2 * np.pi * frequency))).astype(np.int16) - return (sr, audio) + return sr, audio -gr.Interface( +io = gr.Interface( generate_tone, [ gr.inputs.Dropdown(notes, type="index"), gr.inputs.Slider(4, 6, step=1), gr.inputs.Textbox(type="number", default=1, label="Duration in seconds") - ], "audio").launch() + ], "audio") + +io.test_launch() +io.launch() diff --git a/demo/image_mod.py b/demo/image_mod.py index 3aef189ae3..871ff3eb82 100644 --- a/demo/image_mod.py +++ b/demo/image_mod.py @@ -1,15 +1,13 @@ # Demo: (Image) -> (Image) import gradio as gr -from time import time -from PIL import Image def image_mod(image): return image.rotate(45) - -gr.Interface(image_mod, + +io = gr.Interface(image_mod, gr.inputs.Image(type="pil"), "image", examples=[ @@ -17,4 +15,8 @@ gr.Interface(image_mod, ["images/cheetah2.jpg"], ["images/lion.jpg"], ], - ).launch(share=True) + live=True, + ) + +io.test_launch() +io.launch() diff --git a/demo/matrix_transpose.py b/demo/matrix_transpose.py index 4168fc12d9..90987501fc 100644 --- a/demo/matrix_transpose.py +++ b/demo/matrix_transpose.py @@ -1,13 +1,17 @@ # Demo: (Dataframe) -> (Dataframe) import gradio as gr -import numpy as np -import random + def transpose(matrix): return matrix.T -gr.Interface(transpose, - gr.inputs.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), - "numpy" -).launch() + +io = gr.Interface( + transpose, + gr.inputs.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), + "numpy" +) + +io.test_launch() +io.launch() diff --git a/demo/reverse_audio.py b/demo/reverse_audio.py index 434543e04f..54a08b5c5b 100644 --- a/demo/reverse_audio.py +++ b/demo/reverse_audio.py @@ -2,10 +2,14 @@ import gradio as gr import numpy as np -import random + def reverse_audio(audio): sr, data = audio return (sr, np.flipud(data)) -gr.Interface(reverse_audio, "microphone", "audio").launch() + +io = gr.Interface(reverse_audio, "microphone", "audio") + +io.test_launch() +io.launch() diff --git a/demo/sentence_builder.py b/demo/sentence_builder.py index 5942e24b5a..2eafc99a19 100644 --- a/demo/sentence_builder.py +++ b/demo/sentence_builder.py @@ -1,25 +1,28 @@ # Demo: (Slider, Dropdown, Radio, CheckboxGroup, Checkbox) -> (Textbox) import gradio as gr -import numpy as np + def sentence_builder(quantity, animal, place, activity_list, morning): return f"""The {quantity} {animal}s went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}""" -gr.Interface(sentence_builder, - [ - gr.inputs.Slider(2, 20), - gr.inputs.Dropdown(["cat", "dog", "bird"]), - gr.inputs.Radio(["park", "zoo", "road"]), - gr.inputs.CheckboxGroup(["ran", "swam", "ate", "slept"]), - gr.inputs.Checkbox(label="Is it the morning?"), - ], - "text", - examples=[ - [2, "cat", "park", ["ran", "swam"], True], - [4, "dog", "zoo", ["ate", "swam"], False], - [10, "bird", "road", ["ran"], False], - [8, "cat", "zoo", ["ate"], True], - ], - ).launch() +io = gr.Interface( + sentence_builder, + [ + gr.inputs.Slider(2, 20), + gr.inputs.Dropdown(["cat", "dog", "bird"]), + gr.inputs.Radio(["park", "zoo", "road"]), + gr.inputs.CheckboxGroup(["ran", "swam", "ate", "slept"]), + gr.inputs.Checkbox(label="Is it the morning?"), + ], + "text", + examples=[ + [2, "cat", "park", ["ran", "swam"], True], + [4, "dog", "zoo", ["ate", "swam"], False], + [10, "bird", "road", ["ran"], False], + [8, "cat", "zoo", ["ate"], True], + ]) + +io.test_launch() +io.launch() diff --git a/demo/spectogram.py b/demo/spectogram.py index b2185eca90..0672a5d4f2 100644 --- a/demo/spectogram.py +++ b/demo/spectogram.py @@ -4,7 +4,6 @@ import gradio as gr import matplotlib.pyplot as plt import numpy as np from scipy import signal -from scipy.io import wavfile def spectrogram(audio): @@ -15,4 +14,7 @@ def spectrogram(audio): return plt -gr.Interface(spectrogram, "audio", "plot").launch() +io = gr.Interface(spectrogram, "audio", "plot + +io.test_launch() +io.launch() diff --git a/demo/stock_forecast.py b/demo/stock_forecast.py index 81df5d3173..ff52000206 100644 --- a/demo/stock_forecast.py +++ b/demo/stock_forecast.py @@ -1,7 +1,6 @@ # Demo: (Radio, CheckboxGroup, Slider, Checkbox, Dropdown) -> (Image) import gradio as gr -import random import matplotlib.pyplot as plt import numpy as np @@ -21,15 +20,15 @@ def stock_forecast(final_year, companies, noise, show_legend, point_style): return plt -gr.Interface(stock_forecast, - [ - gr.inputs.Radio([2025, 2030, 2035, 2040], - label="Project to:"), - gr.inputs.CheckboxGroup( - ["Google", "Microsoft", "Gradio"]), - gr.inputs.Slider(1, 100), - "checkbox", - gr.inputs.Dropdown(["cross", "line", "circle"], label="Style"), - ], - gr.outputs.Image(plot=True, label="forecast") - ).launch() +io = gr.Interface( + stock_forecast, + [ + gr.inputs.Radio([2025, 2030, 2035, 2040], label="Project to:"), + gr.inputs.CheckboxGroup(["Google", "Microsoft", "Gradio"]), + gr.inputs.Slider(1, 100), + "checkbox", + gr.inputs.Dropdown(["cross", "line", "circle"], label="Style")], + gr.outputs.Image(plot=True, label="forecast")) + +io.test_launch() +io.launch() diff --git a/demo/text_analysis.py b/demo/text_analysis.py index 29e59de2a9..9c58ed90c6 100644 --- a/demo/text_analysis.py +++ b/demo/text_analysis.py @@ -6,6 +6,7 @@ import gradio as gr nlp = spacy.load("en_core_web_sm") + def text_analysis(text): doc = nlp(text) html = displacy.render(doc, style="dep", page=True) @@ -21,10 +22,14 @@ def text_analysis(text): return pos_tokens, pos_count, html -gr.Interface( + +io = gr.Interface( text_analysis, gr.inputs.Textbox(placeholder="Enter sentence here..."), [ "highlight", "key_values", "html" ] -).launch() \ No newline at end of file +) + +io.test_launch() +io.launch() diff --git a/demo/webcam.py b/demo/webcam.py index a0ec6bff40..d60c03b1a0 100644 --- a/demo/webcam.py +++ b/demo/webcam.py @@ -1,9 +1,13 @@ # Demo: (Image) -> (Image) import gradio as gr -import numpy as np + def snap(image): return np.flipud(image) -gr.Interface(snap, gr.inputs.Image(shape=(100,100), image_mode="L", source="webcam"), "image").launch() + +io = gr.Interface(snap, gr.inputs.Image(shape=(100,100), image_mode="L", source="webcam"), "image") + +io.test_launch() +io.launch() diff --git a/demo/zip_to_json.py b/demo/zip_to_json.py index 8a625a20fd..b457c50cf8 100644 --- a/demo/zip_to_json.py +++ b/demo/zip_to_json.py @@ -3,6 +3,7 @@ import gradio as gr from zipfile import ZipFile + def zip_to_json(file_obj): files = [] with ZipFile(file_obj.name) as zfile: @@ -14,4 +15,8 @@ def zip_to_json(file_obj): }) return files -gr.Interface(zip_to_json, "file", "json").launch() + +io = gr.Interface(zip_to_json, "file", "json") + +io.test_launch() +io.launch() diff --git a/demo/zip_two_files.py b/demo/zip_two_files.py index 164390b224..17f8404d8b 100644 --- a/demo/zip_two_files.py +++ b/demo/zip_two_files.py @@ -3,10 +3,15 @@ import gradio as gr from zipfile import ZipFile + def zip_two_files(file1, file2): with ZipFile('tmp.zip', 'w') as zipObj: zipObj.write(file1.name, "file1") zipObj.write(file2.name, "file2") return "tmp.zip" -gr.Interface(zip_two_files, ["file", "file"], "file").launch() \ No newline at end of file + +io = gr.Interface(zip_two_files, ["file", "file"], "file") + +io.test_launch() +io.launch() diff --git a/gradio.egg-info/PKG-INFO b/gradio.egg-info/PKG-INFO index 2dcb1bdf14..a044f2900d 100644 --- a/gradio.egg-info/PKG-INFO +++ b/gradio.egg-info/PKG-INFO @@ -1,6 +1,6 @@ Metadata-Version: 1.0 Name: gradio -Version: 1.1.7 +Version: 1.1.9 Summary: Python library for easily interacting with trained machine learning models Home-page: https://github.com/gradio-app/gradio-UI Author: Abubakar Abid diff --git a/gradio.egg-info/SOURCES.txt b/gradio.egg-info/SOURCES.txt index ac1490d654..231508fe6b 100644 --- a/gradio.egg-info/SOURCES.txt +++ b/gradio.egg-info/SOURCES.txt @@ -9,6 +9,7 @@ gradio/networking.py gradio/outputs.py gradio/processing_utils.py gradio/strings.py +gradio/test_data.py gradio/tunneling.py gradio/utils.py gradio.egg-info/PKG-INFO diff --git a/gradio/inputs.py b/gradio/inputs.py index be2f6b61f7..b4e8b35961 100644 --- a/gradio/inputs.py +++ b/gradio/inputs.py @@ -15,17 +15,19 @@ import base64 import numpy as np import PIL import scipy.io.wavfile -from gradio import processing_utils +from gradio import processing_utils, test_data import pandas as pd import math import tempfile + class InputComponent(Component): """ Input Component. All input components subclass this. """ pass + class Textbox(InputComponent): """ Component creates a textbox for user to enter input. Provides a string (or number is `type` is "float") as an argument to the wrapped function. @@ -33,7 +35,7 @@ class Textbox(InputComponent): """ def __init__(self, lines=1, placeholder=None, default=None, numeric=False, type="str", label=None): - ''' + """ Parameters: lines (int): number of line rows to provide in textarea. placeholder (str): placeholder hint to provide behind textarea. @@ -41,7 +43,7 @@ class Textbox(InputComponent): numeric (bool): DEPRECATED. Whether the input should be parsed as a number instead of a string. type (str): Type of value to be returned by component. "str" returns a string, "number" returns a float value. label (str): component name in interface. - ''' + """ self.lines = lines self.placeholder = placeholder self.default = default @@ -50,6 +52,13 @@ class Textbox(InputComponent): self.type = "number" else: self.type = type + if default is None: + self.test_input = { + "str": "the quick brown fox jumped over the lazy dog", + "number": 786.92, + }[type] + else: + self.test_input = default super().__init__(label) def get_template_context(self): @@ -77,7 +86,6 @@ class Textbox(InputComponent): raise ValueError("Unknown type: " + self.type + ". Please choose from: 'str', 'number'.") - class Slider(InputComponent): """ Component creates a slider that ranges from `minimum` to `maximum`. Provides a number as an argument to the wrapped function. @@ -101,6 +109,7 @@ class Slider(InputComponent): step = 10 ** power self.step = step self.default = minimum if default is None else default + self.test_input = self.default super().__init__(label) def get_template_context(self): @@ -126,10 +135,11 @@ class Checkbox(InputComponent): """ def __init__(self, label=None): - ''' + """ Parameters: label (str): component name in interface. - ''' + """ + self.test_input = True super().__init__(label) @classmethod @@ -154,6 +164,7 @@ class CheckboxGroup(InputComponent): ''' self.choices = choices self.type = type + self.test_input = self.choices super().__init__(label) def get_template_context(self): @@ -186,6 +197,7 @@ class Radio(InputComponent): ''' self.choices = choices self.type = type + self.test_input = self.choices[0] super().__init__(label) def get_template_context(self): @@ -202,6 +214,7 @@ class Radio(InputComponent): else: raise ValueError("Unknown type: " + self.type + ". Please choose from: 'value', 'index'.") + class Dropdown(InputComponent): """ Component creates a dropdown of which only one can be selected. Provides string representing selected choice as an argument to the wrapped function. @@ -217,6 +230,7 @@ class Dropdown(InputComponent): ''' self.choices = choices self.type = type + self.test_input = self.choices[0] super().__init__(label) def get_template_context(self): @@ -248,7 +262,7 @@ class Image(InputComponent): invert_colors (bool): whether to invert the image as a preprocessing step. source (str): Source of image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "canvas" defaults to a white image that can be edited and drawn upon with tools. tool (str): Tools used for editing. "editor" allows a full screen editor, "select" provides a cropping and zoom tool. - type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3), "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name. + type (str): Type of value to be returned by component. "numpy" returns a numpy array with shape (width, height, 3) and values from 0 to 255, "pil" returns a PIL image object, "file" returns a temporary file object whose path can be retrieved by file_obj.name. label (str): component name in interface. ''' self.shape = shape @@ -257,6 +271,7 @@ class Image(InputComponent): self.tool = tool self.type = type self.invert_colors = invert_colors + self.test_input = test_data.BASE64_IMAGE super().__init__(label) @classmethod @@ -293,6 +308,8 @@ class Image(InputComponent): file_obj = tempfile.NamedTemporaryFile() im.save(file_obj.name) return file_obj + else: + raise ValueError("Unknown type: " + self.type + ". Please choose from: 'numpy', 'pil', 'file'.") def rebuild(self, dir, data): """ @@ -312,14 +329,15 @@ class Audio(InputComponent): """ def __init__(self, source="upload", type="numpy", label=None): - ''' + """ Parameters: source (str): Source of audio. "upload" creates a box where user can drop an audio file, "microphone" creates a microphone input. type (str): Type of value to be returned by component. "numpy" returns a 2-set tuple with an integer sample_rate and the data numpy.array of shape (samples, 2), "file" returns a temporary file object whose path can be retrieved by file_obj.name, "mfcc" returns the mfcc coefficients of the input audio. label (str): component name in interface. - ''' + """ self.source = source self.type = type + self.test_input = test_data.BASE64_AUDIO super().__init__(label) def get_template_context(self): @@ -361,6 +379,7 @@ class File(InputComponent): label (str): component name in interface. ''' self.type = type + self.test_input = None super().__init__(label) @classmethod @@ -385,7 +404,7 @@ class Dataframe(InputComponent): """ def __init__(self, headers=None, row_count=3, col_count=3, datatype="str", type="pandas", label=None): - ''' + """ Parameters: headers (List[str]): Header names to dataframe. row_count (int): Limit number of rows for input. @@ -393,14 +412,17 @@ class Dataframe(InputComponent): datatype (Union[str, List[str]]): Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", and "date". type (str): Type of value to be returned by component. "pandas" for pandas dataframe, "numpy" for numpy array, or "array" for a Python array. label (str): component name in interface. - ''' + """ self.headers = headers self.datatype = datatype self.row_count = row_count self.col_count = len(headers) if headers else col_count self.type = type - super().__init__(label) + sample_values = {"str": "abc", "number": 786, "bool": True, "date": "02/08/1993"} + column_dtypes = [datatype]*self.col_count if isinstance(datatype, str) else datatype + self.test_input = [[sample_values[c] for c in column_dtypes] for _ in range(row_count)] + super().__init__(label) def get_template_context(self): return { diff --git a/gradio/interface.py b/gradio/interface.py index 2a5140737c..d83d2de2cc 100644 --- a/gradio/interface.py +++ b/gradio/interface.py @@ -193,19 +193,19 @@ class Interface: return config - def process(self, raw_input): + def process(self, raw_input, predict_fn=None): """ :param raw_input: a list of raw inputs to process and apply the prediction(s) on. + :param predict_fn: which function to process. If not provided, all of the model functions are used. :return: processed output: a list of processed outputs to return as the prediction(s). duration: a list of time deltas measuring inference time for each prediction fn. """ - processed_input = [input_interface.preprocess( - raw_input[i]) for i, input_interface in - enumerate(self.input_interfaces)] + processed_input = [input_interface.preprocess(raw_input[i]) + for i, input_interface in enumerate(self.input_interfaces)] predictions = [] durations = [] for predict_fn in self.predict: @@ -253,6 +253,22 @@ class Interface: thread.keep_running = False networking.url_ok(path_to_local_server) + def test_launch(self): + for predict_fn in self.predict: + print("Test launching: {}()...".format(predict_fn.__name__), end=' ') + + raw_input = [] + for input_interface in self.input_interfaces: + if input_interface.test_input is None: # If no test input is defined for that input interface + print("SKIPPED") + break + else: # If a test input is defined for each interface object + raw_input.append(input_interface.test_input) + else: + self.process(raw_input) + print("PASSED") + continue + def launch(self, inline=None, inbrowser=None, share=False, debug=False): """ Parameters @@ -326,6 +342,8 @@ class Interface: if self.verbose: print(strings.en["COLAB_NO_LOCAL"]) else: # If it's not a colab notebook and share=False, print a message telling them about the share option. + print("To get a public link for a hosted model, " + "set Share=True") if self.verbose: print(strings.en["PUBLIC_SHARE_TRUE"]) share_url = None @@ -345,10 +363,10 @@ class Interface: # with the interface. if inline: from IPython.display import IFrame, display - if (is_colab): - # Embed the remote interface page if on google colab; - # otherwise, embed the local page. - print("Interface loading below...") + # Embed the remote interface page if on google colab; + # otherwise, embed the local page. + print("Interface loading below...") + if share: while not networking.url_ok(share_url): time.sleep(1) display(IFrame(share_url, width=1000, height=500)) diff --git a/gradio/processing_utils.py b/gradio/processing_utils.py index 6850c04aa3..1e4fba54d2 100644 --- a/gradio/processing_utils.py +++ b/gradio/processing_utils.py @@ -32,7 +32,6 @@ def encode_plot_to_base64(plt): with BytesIO() as output_bytes: plt.savefig(output_bytes, format="png") bytes_data = output_bytes.getvalue() - plt.close() base64_str = str(base64.b64encode(bytes_data), 'utf-8') return "data:image/png;base64," + base64_str diff --git a/gradio/test_data.py b/gradio/test_data.py new file mode 100644 index 0000000000..e157d43790 --- /dev/null +++ b/gradio/test_data.py @@ -0,0 +1,2 @@ +BASE64_IMAGE = "" +BASE64_AUDIO = "data:audio/ogg;base64,T2dnUwACAAAAAAAAAADSeWyXAAAAAHTSMw8BHgF2b3JiaXMAAAAAAkSsAAD/////APQBAP////+4AU9nZ1MAAAAAAAAAAAAA0nlslwEAAACM6FVoEkD/////////////////////PAN2b3JiaXMNAAAATGF2ZjU2LjIzLjEwNgEAAAAfAAAAZW5jb2Rlcj1MYXZjNTYuMjYuMTAwIGxpYnZvcmJpcwEFdm9yYmlzKUJDVgEACAAAgCJMGMSA0JBVAAAQAACgrDeWe8i99957gahHFHuIvffee+OsR9B6iLn33nvuvacae8u9995zIDRkFQAABACAKQiacuBC6r33HhnmEVEaKse99x4ZhYkwlBmFPZXaWushk9xC6j3nHggNWQUAAAIAQAghhBRSSCGFFFJIIYUUUkgppZhiiimmmGLKKaccc8wxxyCDDjropJNQQgkppFBKKqmklFJKLdZac+69B91z70H4IIQQQgghhBBCCCGEEEIIQkNWAQAgAAAEQgghZBBCCCGEFFJIIaaYYsopp4DQkFUAACAAgAAAAABJkRTLsRzN0RzN8RzPESVREiXRMi3TUjVTMz1VVEXVVFVXVV1dd23Vdm3Vlm3XVm3Vdm3VVm1Ztm3btm3btm3btm3btm3btm0gNGQVACABAKAjOZIjKZIiKZLjOJIEhIasAgBkAAAEAKAoiuM4juRIjiVpkmZ5lmeJmqiZmuipngqEhqwCAAABAAQAAAAAAOB4iud4jmd5kud4jmd5mqdpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpmqZpQGjIKgBAAgBAx3Ecx3Ecx3EcR3IkBwgNWQUAyAAACABAUiTHcixHczTHczxHdETHdEzJlFTJtVwLCA1ZBQAAAgAIAAAAAABAEyxFUzzHkzzPEzXP0zTNE01RNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE3TNE1TFIHQkFUAAAQAACGdZpZqgAgzkGEgNGQVAIAAAAAYoQhDDAgNWQUAAAQAAIih5CCa0JrzzTkOmuWgqRSb08GJVJsnuamYm3POOeecbM4Z45xzzinKmcWgmdCac85JDJqloJnQmnPOeRKbB62p0ppzzhnnnA7GGWGcc85p0poHqdlYm3POWdCa5qi5FJtzzomUmye1uVSbc84555xzzjnnnHPOqV6czsE54Zxzzonam2u5CV2cc875ZJzuzQnhnHPOOeecc84555xzzglCQ1YBAEAAAARh2BjGnYIgfY4GYhQhpiGTHnSPDpOgMcgppB6NjkZKqYNQUhknpXSC0JBVAAAgAACEEFJIIYUUUkghhRRSSCGGGGKIIaeccgoqqKSSiirKKLPMMssss8wyy6zDzjrrsMMQQwwxtNJKLDXVVmONteaec645SGultdZaK6WUUkoppSA0ZBUAAAIAQCBkkEEGGYUUUkghhphyyimnoIIKCA1ZBQAAAgAIAAAA8CTPER3RER3RER3RER3RER3P8RxREiVREiXRMi1TMz1VVFVXdm1Zl3Xbt4Vd2HXf133f141fF4ZlWZZlWZZlWZZlWZZlWZZlCUJDVgEAIAAAAEIIIYQUUkghhZRijDHHnINOQgmB0JBVAAAgAIAAAAAAR3EUx5EcyZEkS7IkTdIszfI0T/M00RNFUTRNUxVd0RV10xZlUzZd0zVl01Vl1XZl2bZlW7d9WbZ93/d93/d93/d93/d939d1IDRkFQAgAQCgIzmSIimSIjmO40iSBISGrAIAZAAABACgKI7iOI4jSZIkWZImeZZniZqpmZ7pqaIKhIasAgAAAQAEAAAAAACgaIqnmIqniIrniI4oiZZpiZqquaJsyq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7ruq7rukBoyCoAQAIAQEdyJEdyJEVSJEVyJAcIDVkFAMgAAAgAwDEcQ1Ikx7IsTfM0T/M00RM90TM9VXRFFwgNWQUAAAIACAAAAAAAwJAMS7EczdEkUVIt1VI11VItVVQ9VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV1TRN0zSB0JCVAAAZAADDtOTScs+NoEgqR7XWklHlJMUcGoqgglZzDRU0iEmLIWIKISYxlg46ppzUGlMpGXNUc2whVIhJDTqmUikGLQhCQ1YIAKEZAA7HASTLAiRLAwAAAAAAAABJ0wDN8wDL8wAAAAAAAABA0jTA8jRA8zwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRNAzTPAzTPAwAAAAAAAADN8wBPFAFPFAEAAAAAAADA8jzAEz3AE0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABxNAzTPAzTPAwAAAAAAAADL8wBPFAHPEwEAAAAAAABA8zzAE0XAE0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAABDgAAARZCoSErAoA4AQCHJEGSIEnQNIBkWdA0aBpMEyBZFjQNmgbTBAAAAAAAAAAAAEDyNGgaNA2iCJA0D5oGTYMoAgAAAAAAAAAAACBpGjQNmgZRBEiaBk2DpkEUAQAAAAAAAAAAANBME6IIUYRpAjzThChCFGGaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAIABBwCAABPKQKEhKwKAOAEAh6JYFgAAOJJjWQAA4DiSZQEAgGVZoggAAJaliSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAgAEHAIAAE8pAoSErAYAoAACHolgWcBzLAo5jWUCSLAtgWQDNA2gaQBQBgAAAgAIHAIAAGzQlFgcoNGQlABAFAOBQFMvSNFHkOJalaaLIkSxL00SRZWma55kmNM3zTBGi53mmCc/zPNOEaYqiqgJRNE0BAAAFDgAAATZoSiwOUGjISgAgJADA4TiW5Xmi6HmiaJqqynEsy/NEURRNU1VVleNolueJoiiapqqqKsvSNM8TRVE0TVVVXWia54miKJqmqrouPM/zRFEUTVNVXRee53miKIqmqaquC1EURdM0TVVVVdcFomiapqmqquq6QBRF0zRVVVVdF4iiKJqmqqqu6wLTNE1VVVXXlV2Aaaqqqrqu6wJUVVVd13VlGaCqquq6rivLANd1XdeVZVkG4Lqu68qyLAAA4MABACDACDrJqLIIG0248AAUGrIiAIgCAACMYUoxpQxjEkIKoWFMQkghZFJSKimlCkIqJZVSQUilpFIySi2lllIFIZWSSqkgpFJSKQUAgB04AIAdWAiFhqwEAPIAAAhjlGKMMeckQkox5pxzEiGlGHPOOakUY84555yUkjHnnHNOSumYc845J6VkzDnnnJNSOuecc85JKaV0zjnnpJRSQugcdFJKKZ1zDkIBAEAFDgAAATaKbE4wElRoyEoAIBUAwOA4lqVpnieKpmlJkqZ5nueJpqpqkqRpnieKpqmqPM/zRFEUTVNVeZ7niaIomqaqcl1RFEXTNE1VJcuiaIqmqaqqC9M0TdNUVdeFaZqmaaqq68K2VVVVXdd1Yduqqqqu68rAdV3XdWUZyK7ruq4sCwAAT3AAACqwYXWEk6KxwEJDVgIAGQAAhDEIKYQQUsggpBBCSCmFkAAAgAEHAIAAE8pAoSErAYBUAACAEGuttdZaaw1j1lprrbXWEuestdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbXWWmuttdZaa6211lprrbVWACB2hQPAToQNqyOcFI0FFhqyEgAIBwAAjEGIMegklFJKhRBj0ElIpbUYK4QYg1BKSq21mDznHIRSWmotxuQ55yCk1FqMMSbXQkgppZZii7G4FkIqKbXWYqzJGJVSai22GGvtxaiUSksxxhhrMMbm1FqMMdZaizE6txJLjDHGWoQRxsUWY6y11yKMEbLF0lqttQZjjLG5tdhqzbkYI4yuLbVWa80FAJg8OABAJdg4w0rSWeFocKEhKwGA3AAAAiGlGGPMOeeccw5CCKlSjDnnHIQQQgihlFJSpRhzzjkIIYRQQimlpIwx5hyEEEIIpZRSSmkpZcw5CCGEUEoppZTSUuuccxBCCKWUUkopJaXUOecghFBKKaWUUkpKLYQQQiihlFJKKaWUlFJKIYRQSimllFJKKamllEIIpZRSSimllFJSSimFEEIppZRSSimlpJRaK6WUUkoppZRSSkkttZRSKKWUUkoppZSSWkoppVJKKaWUUkopJaXUUkqllFJKKaWUUkpLqaWUSimllFJKKaWUlFJKKaVUSimllFJKKSml1FpKKaWUSimllFJaaymlllIqpZRSSimltNRaay21lEoppZRSSmmttZRSSimVUkoppZRSAADQgQMAQIARlRZipxlXHoEjChkmoEJDVgIAZAAADKOUUkktRYIipRiklkIlFXNQUooocw5SrKlCziDmJJWKMYSUg1QyB5VSzEEKIWVMKQatlRg6xpijmGoqoWMMAAAAQQAAgZAJBAqgwEAGABwgJEgBAIUFhg4RIkCMAgPj4tIGACAIkRkiEbEYJCZUA0XFdACwuMCQDwAZGhtpFxfQZYALurjrQAhBCEIQiwMoIAEHJ9zwxBuecIMTdIpKHQgAAAAAgAMAPAAAJBtAREQ0cxwdHh8gISIjJCUmJygCAAAAAOAGAB8AAEkKEBERzRxHh8cHSIjICEmJyQlKAAAggAAAAAAACCAAAQEBAAAAAIAAAAAAAQFPZ2dTAAQAWgAAAAAAANJ5bJcCAAAAgj7NLiU1/yA4MrTSmOluanqbtcPY/w//Af8U/xX/Fv8o/yL/Jv81/yYB9CSz/hJutS5S5uELBR8L66hMbCYB6MjXvbm6N4IgSjhP7Ni7XXFc7HctclM1G+vWvr5XYQAyllz7LOFFS20ZEloiGEuufZHwolJbhoIF3hCiUpFlWa1WcwKzs5mKzVXFlAZVxQoA4EWMjRg1xqiUMexaF1uDNRiGo6pYHAmCiGLHtCLBCqPGGdEuFEgYWgNIfUSbgUHqpLMkba+Ox3YcV0HntMBK9JVIkcQkGUSlqCOxiCUI1EQCkr79gl021AC+q0GQFLgfhlyTuqurXnmbGkVBatGzTAZLpKalRNAuyIBJtXMq1xe7iqbsosaOZ8DMxCHp2iMMdEPSe6vrEduzRm23HTupx70trpwqqjvluaGIERghMJ/ty3jvZxVrv+XlVmP/Oue72/1TtbvC/nyvd/l5nYY8oCEEDWpoMLQR3iIgA3DBDRh8zNrQmjpdAVYF11gRACxSpctbnjn0FqnS9S33HLjnAnBKKYQSgKkphnq9SozzuqLeoVEk8T4zztsxvp1xX7dXM0V4ay0D3JLLdolfAb8ll+0SvwJxVtaESIlT4g5grYhaY/qr42nn19PO6vHK4MjskS8tPaFwEAUaKb6EFwkP4gITiBRfwouEB3GBCRxFTrudCgB0CF0RHTqJDsPQESMEAAAAAABA1LA6WBwcHS1WmxWH2nIkABhYMtKYmRvpdXqdXqfXaCPRSDQSjUSDMDCgqnqqoNmmVi/bAv5jyoQPgkyIKv4IIwOAjMKbzAY285LMx7e3OFBeGnyiiQ1gMXJggCQCIFgpI8tMQJjXTQPQVUAzkADSgKR4JMMHQFcBYcllcFzCZOMBATgIvAN+Gd7zj+Pd1PpG28BleM8/j3cX6xsmcAOtVi+BjUeHa4m7GIahoxgLAAAAAAAOWK1qGKJWUxxV7ajdqmKgpopFTLtpYcuKWrXEigWWllhYyNGQSEBoFOCwmrfjnHF7Nr2aT7pJhkTuv4YrG2fSU92xBdyU+yw0CuTYSMQhbuoMFXMfO47je61IYyMJD1qwLQGDRGhawihYsJFu8ibHTdIL6ZLWPN+JZN1kXXPyouTnSYokvcg3ItfzpENX1l4nEK3n4KT9mbaMsm5LfNQBjswpUQC+OX6is+iveiTYkQCb4xc6ivaoR4IdCfAHAAAA4CGTYYphGAYJyAYAAAAAAAAAAACRlSYAQEhVkQiJwFBjURpZ0CiGUgiJkAjJL1aMmAMA70ggI2Vo0OAhGN0aAJnwABe6SFaABbKAxFEYrCqNIKlobWTmLiF8ljVlVu3Eb5Iwcoc+WokPNBi1DjrQKAaABSzoCwCABQAALl4ZnjZ8l29TJuywoDI8bfgu36ZM2GHBW0RmADLrmRyJySN0SAzDNWQykaoKAAAAANZaNVasGlSNtYJpFbvF0bBaxIqFqCKOBpEwjATRMKKoI0QJCBU4VOAw9tibMAiDMGi3tubO7e7NNTmxx9zN3Vx0ikgksv/q1avNnPyu7/oIbGks2ZIdra5QFrIrsyALsiALUjTu5/pycmLBzd3czUUkEolIIY+bLMiCFE0++eSTz30pkkseySOtXjCpVKp0vHTu3F6v19frJaPxkXoksq+x+5vrtYH12nApK5VK1VJeptdz9LSHalAA/hjeM1dJs9SvRnrOenw8hvfMVdIs9avhOevx8gcAAAAAAABkMshkkIBsAEAAAAAAAAAAAFFJaEkAACAlAtVAo1oWBmZojcxNTC0KAICLC0AoJOtJRV+hLA6hMrCr+g4swBCAAmUuQPkBoAEADgDeCN4zV0mz1KuQnruOj0bwkb1KmqFeBc9dj48/AAAAAAAAMAzDIBsAAAMAAAAAAAAAGiQyGgAAQCBRVGlsSU2mAlWjGmkVnQAAADQsH8saKpHAMhSManQF9A6v48auUQcAVAMAhmUugAYB3ug9Mjep61afDWPXgEbvkblJXbf4aBinHvgDAAAAAAAggWEYhmEQCAABAQAAAAAAQDZJyAYAAJAIVJWWbZoYVotI1VQaSRMkAFwA0AADQAET7osFCn25VjuXuj0W3lu14wv2AoxhYIEGDABohgVgAYADAHAOUAAHiAA+yF2zN4lrV58FY9eBQe6avUlcu/osGLse+AMAAAAAACCBYViWoSNGqBgAAAAAAIASJGQLAACAQAojVWPF5JMkFyNVaS6lBSSAhc4LAGyfCn3PVHNt7fCW67yv3kd98Hl9TM/Wsq8+ZA4vL/vLE9pMuNvRKJH/DduZWQDWGlYF+dBV+3oHVw7A0QA4TAZ3Sw6AA5A2CTTyd7P5AD6YPTI3KWsXvzW0U8eVweyRuUlZu/jVME498AcAAAAAAGAYNiWGUVUxAAAAAABQA5AtAAAgkAh8Wd3C8duyXoPEkk5vCQkgBxoATTKJhkjHW2bR03Up81cjO7FEayY18anKnBanNiTLjPvr5n2TpZDhm1prmswUMyydE6b9a7dVMwvVwqSlYn5ZscOzUNaigSRlSE4BMawVTFoOsWGJyhPaqEnjNWXUhWye/Fn/+YuW03XAYAG+d11zd8nnFp8Ndg3Yu+65m+Szi88Guwb8AQAAAAAACQzDJqYYVYkYAwAAAAAQTQmikQAAgBBInbFiIDUajQBjI0sWkAAAoH+4ODCosWuG2qOhy6pxuvGnZNUth5mD9OqfiExBT95kwWYqSQbgmaIQW1v3pt1xrK4FjKW5R3lS83aRAqp392QV0M2bJPTsoip7KGYe6f3PT3yrWsVEe5Fa1srwYl4RSfPnpW5GWmfO1pW0TiKuDvZ6O9diIMO644R0xgB+V91zV4nnVq8Bsx64q665m8R9V68Box74AwAAAGAAJLBsFVuliqoYAAAAAIBoAEpJAAAphQ1C6LTmpqYWhBBSbywMAIAMgPkAd2DYpQKqJ2m4S7RiaB3vx7iQh+ovBqp3kztJXragwdXvKfoUkHcBYvgmSO5srpyc7mR002McEgVP9cyQXZ54yHP10nLlhnWOj3b+c3vn5BeZG1AXucuTnIdlkAEbEAP6d0rd2leSard/j1k1cbWfVermjFyIzJF0kXZlGSxiQMLSNizSw51z9ZRxqCKAHAAeN30PThKWq49Gkerg2jZ9DM3/CvXRSErdGtc/AAAAACAhV42qqqQBVaIKAAAAQM0QUDIBABBSIqShYmzJVG+KomjNEFoBAIA2F8Y5SeX+8GabWefCmtzlBVUtWRBXJ0zCmTxnhoyfh5nkHR2Fo2PPHBhVTtVpNTFcSf1btS1R/QJtOpHZquwfJInrFK7LRYM1M4zrhaIr2XLPJe0q7Q2P8akOp0jyjKjN0vEjzSghnUVF6srZBhKoDz33DN3ZNN1VTD7WGENCvi+IIEEyv//81b9uyNmLvyTVN9afJ/bK7r8c2vfkAyQuSQJM8mUR4/MHrWw258zy7WqZmVB4zNESZZv2ll9icNByaECDDACeB/2VLxK7DI9J1GL6SMmD/spXSR33mhBi8sAfAAAAANhKxRTLVlJVFSMQAAAAQKkERBMAIACQUmc41Yokoi5VCK1iYGwOAAAVAMjJKjQV01d6HmogGWa3uCFhq+eAWN5qJzk1dXyzKMc7f1nNOJ3166VeTUkc3ncOhRr1d1b9dwJhfvq9h06x6asm0//pCAiqds0IzGRKSLjjooK58vqRyBnSvj89XdA4JmmoZtHSTK19OgsXFP1/mPPJMowKaLKu7BfGnU4vPEkw9difiZHxSF/zRWz/vumfdxHwdEtXU+zlwjMepYK4OZdeP3td5jGOPb0g41l/sRVUMD45AIcNPuf8ziVJnXQNEFsPzDm/81VSJzwGCBX8AQAAADCS8mArjWKbqqoqBgAAALQQAZoBACAFSIRMyFgpfup2BUBNcuc6kgUABJicAwm14jeHykz69VS8687Rr7/Xpv8kz8q2fpansrkAmTeXRKBBRGTTP+eR2/+eWys+ufGvq5Kz6SeovGvXaanow+ydO0tK9vcvuj/byqhjMqfXDqmXW4/LJGbp8Q2LS1aSSVVfp4ISCUXPrprLxNMNB9hX9y2eWVveN5OzqK/ceU4zVPbKeVrKzBoYZI0PgIQsihsTjnS07oX52c/CZnr8lUEXf2ISIfXSKxVMpKiZSHl0w63OrhOpqq0jH4B8PYs+mgMyGCFncBmqBAX+xvzKeklNhlcDsXXAG/MzVyR2wscA4YM/AAAAALKZysVJVSmpGgwqBgAAAGpGgJoBADYSABkv71JHy/nyeTluxu8rogUAaQAAqGahuSVtte9O8unS+/sM4WRRPQyXYuiO47jP15meSzmez2MRLPk8WQ9+uCCKCeO6+AJxPpMalfmCo0zP8OqcFdV8vmQyXgAHnA/jLnc2UEKF6iHffd8u/qXKrg1FDoeZ1PlqqBuQUS4UkE7qpG5czz8hk4JzevZknqgmvxdrPDJ9MSpmc56ZXYUiT65I8bt9mzEFu+fPm/vftSK3mJf0kHh52gh+Z/A5O4K1HJ++boy6mUBGpT48CoQJYqfCPaT18QGQl8JzUzOguQGelnwNRAl3wsdIEHEZ0pLPgSLxJnyMBOFX4AMAkTOaLosqom6dIgAy2WIqF1vFqKpBFQAAAFRACXLfaFS1FkEVAA6AQbXAUaIPbMqXOEsHJwSo2bw74sBSOeOnO6t6yLJLKTbW9Dq+7eq7FmbwDFf19kxh5+Yse8iuXVVvga0YhsLu+uM881wFkLymlo7jyhLPwFDcW8VVULywnqxnDOuXFTfZynuAvp1NUe9nBz0toKuyEW/j2qY1TUPVM3QuPPhUAkxnvF/nb1895wYvguSDly/z/7skF9+x326O6zyRPiq+pfsYO56YyktxS9vmelMOqbrxmSjfLjMiuLj/Tkq1BcesV4RqMhM/k3KmS2U8XJvvQRADnpZ8ZdP3IayzQcQgLfnOxs9N6GeDiMEfAAAAoMlW5UrFsklVVRUAAADIQoICAIQqQCKEh3ffbRv67SmkVMwxNJEAACgkEgoAAJZlyRHresrdNelLKA9qcx/PNJ3ROtU1edcIHoplF1VbTdx4lw51V+tctezY0w83Tynt0lPxXaeppzqPBUpXrQcHaCqmvxrorpnrCzj0/63i3n0dGIo6OdsrbCg23WRRTfdAliC1l/aBeRec9Ns6syVWQiQyBw+7S1/1oGPbPL6rRJ+hk1TTPXdxpnWu3jsvpMwDV2v/8obdH1fSdv/GfpuXVv8a+5a+bb0NjZn+Hy+3eL/lpsTMjElt7lKp74cx5lVc+J0ecZyXhNoT/nYe39WJQ/v/E0/IZm5ugw0DAJ6WfFlJ4k9aJQg1LaQl37aX+JMWA8JPFX4AAJWsBoozVAOwxVZVsZWSqqoqBgAAIGupqwr5XAUAgEQAIKVB8ZC88bpRM7quKb5O9s+zTCfVXF0oduZ71zk69ox25k73pUMdT5eK4hzwVN+U+BcVT+7GKHYzI/Yoz2ZmISly6jd1vkP2pmvSVeuH65lGY3W0L7smc7qqORON5kzFLJWmGRhltwusXDITJn2/xg/3o4bpXfOYJAf956Z5G1TVtlDDUAXP3dSMG2bf6UbeVa1QhjnMjkX1sGfiocx1A2T30SkvSs+NnG+uVPe0zfHfghTZfMfMd/bLuauitdS29qrPYlrq98+VRAa3JFZNeS8f8DTqGVFz0oqCoBDZCGv8k4C6DABelnxyUSRIegggNYwl72QREZEeKAAfAJB1yiwzyPplFahUOVdVJTooaqRKVAAAAAAAI8GxgkXMc7YKAACokmQ6KjyE+3088Jm2lr27+vTztobbIQ6fJM2Bqax5WU7gCjldlUqK3E920lD7ETV5XxllFpWjrykA3lJZ/HbRfeLUGc68fDM5tQGcFvQkEQzKaRprHEGOKJAmWg1UInLy/OkiZ7sSJ2hv591dc2Hx5AYS8tTpP8A0m+6abCb7cqfAVBL3ri7KQOdEfW05VaioH+rZbk2rziaFzkq+MZJsy1aMqX/bAoEt38jiK+l1d327Cf6SZbAtO5bRH5fPdajrdrSC0/3J6yX13CxdOpq6QgmLIgPxhviVpDp/JlPVizZfiprLzuQ6AF6WfMEkIsZdAFCWfKIiEsH1AwAfAMiYPDMzkLOnR4K+crGVq6pUFVVRAQAAAMATg33eSZLFeCsiAAAFOt1uF+0e9fCw+2Gu/Hl5uTWfjk/dzPnK6U8Qo+zJk5ycWp5u4tG87qxDROCQPhotvkmvlRcu7JxaNPKp7QU+oD2ZTHRpPFeZmd9m7nXmFGVWFk7nk0lSu+e+s4aK01NTzwvJZud8IVcPUuaeJBmginLxb9CV6zi7TkSt1DypPpNzOF0fxQkzLqiEiZre/XT3HSNUz7M8AN2aKgZq/qObRsBk6k6o8jQMaWFhB0ju7tuNvipHw3BbBrMqGbarHhP8p76l5TTW9MJZlbD/WqK9dCtuFaHuokJgwyUAsnT3/Ek0D62NFwpHZIzLrU5vDwMGtAJCQPSp54YDHpb80lXiY417JVHV1RuW/DJRwhvnQAHXfaaciym2GLoMqipGYAAAAAAHtbCxw7Z1ViuZEyOr3dm2tjRU0KDVcY13pPbj/17Eby7ncWa7f9NYtJFO9qHyTsUJCIuwDB/i6nZznn3SDaQ77+x38etxXl6PYX3mqt53gixfX7uybW6aWv3Wr1mML9W78gwwv//vbfbvf3aT9+VnV8+Az/dPA4chOD5/PoXMEgbr8j670su6TA9M1/6e05FKb9a/WXN2+zr7ZKHiurOmAdhnF4ymp4d53sWX+3bV81k37S/fv2X8ts9na/fvv//WAUjP/t40D897rS0g4V2euEnjaEM2AyWOhbYZBwWPx7sAT9xgvs3Pz9x73KxdZpq1X+yCh3uX8wCwywAO" diff --git a/setup.py b/setup.py index 83e1accf1d..0406a00ffb 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ except ImportError: setup( name='gradio', - version='1.1.7', + version='1.1.9', include_package_data=True, description='Python library for easily interacting with trained machine learning models', author='Abubakar Abid',