This commit is contained in:
aliabd 2020-07-08 16:52:17 -07:00
commit 246cdc46d5
33 changed files with 487 additions and 454 deletions

1
.gitignore vendored
View File

@ -18,3 +18,4 @@ __pycache__/
*$py.class
demo/models/*
dist/*
*.h5

223
README.md
View File

@ -4,14 +4,157 @@
<img src="https://i.ibb.co/GHRk2JP/header-2.png" alt="drawing" width="1000"/>
At Gradio, we often try to understand what inputs that a model is particularly sensitive to. To help facilitate this, we've developed and open-sourced `gradio`, a python library that allows you to easily create input and output interfaces over trained models to make it easy for you to "play around" with your model in your browser by dragging-and-dropping in your own images (or pasting your own text, recording your own voice, etc.) and seeing what the model outputs. We are working on making creating a shareable, public link to your model so you can share the interface with others (e.g. your client, your advisor, or your dad), who can use the model without writing any code.
At Gradio, we often try to understand what inputs a model is particularly sensitive to. To help facilitate this, we've developed and open-sourced `gradio`, a python library that allows you to quickly create input and output interfaces over trained models to make it easy for you to "play around" with your model in your browser by dragging-and-dropping in your own images (or pasting your own text, recording your own voice, etc.) and seeing what the model outputs. `gradio` can also generate a share link which allows anyone, anywhere to use the interface as the model continues to run on your machine.
Gradio is useful for:
* Creating demos of your machine learning code for clients / collaborators / users
* Getting feedback on model performance from users
* Debugging your model interactively during development
For more details, see the accompanying paper: ["Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild"](https://arxiv.org/pdf/1906.02569.pdf), *ICML HILL 2019*, and please use the citation below.
To get a sense of `gradio`, take a look at a few of these examples, and find more on our website: www.gradio.app.
## Installation
```
pip install gradio
```
(you may need to replace `pip` with `pip3` if you're running `python3`).
## Usage
Gradio is very easy to use with your existing code. Here are a few working examples:
### 0. Hello World [![alt text](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/18ODkJvyxHutTN0P5APWyGFO_xwNcgHDZ?usp=sharing)
Let's start with a basic function (no machine learning yet!) that greets an input name. We'll wrap the function with a `Text` to `Text` interface.
```python
import gradio as gr
def greet(name):
return "Hello " + name + "!"
gr.Interface(fn=greet, inputs="text", outputs="text").launch()
```
The core Interface class is initialized with three parameters:
- `fn`: the function to wrap
- `inputs`: the name of the input interface
- `outputs`: the name of the output interface
Calling the `launch()` function of the `Interface` object produces the interface shown in image below. Click on the screenshot to go the live interface in our getting started page.
<a href="https://gradio.app/getting_started#interface_4">
<p align="center">
<img src="https://i.ibb.co/Z8p7gLZ/hello-world.png" alt="drawing"/>
</p>
</a>
### 1. Inception Net [![alt text](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1c6gQiW88wKBwWq96nqEwuQ1Kyt5LejiU?usp=sharing)
Now, let's do a machine learning example. We're going to wrap an
interface around the InceptionV3 image classifier, which we'll load
using Tensorflow! Since this is an image classification model, we will use the `Image` input interface.
We'll output a dictionary of labels and their corresponding confidence scores with the `Label` output
interface. (The original Inception Net architecture [can be found here](https://arxiv.org/abs/1409.4842))
```python
import gradio as gr
import tensorflow as tf
import numpy as np
import requests
inception_net = tf.keras.applications.InceptionV3() # load the model
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def classify_image(inp):
inp = inp.reshape((-1, 299, 299, 3))
inp = tf.keras.applications.inception_v3.preprocess_input(inp)
prediction = inception_net.predict(inp).flatten()
return {labels[i]: float(prediction[i]) for i in range(1000)}
image = gr.inputs.Image(shape=(299, 299, 3))
label = gr.outputs.Label(num_top_classes=3)
gr.Interface(fn=classify_image, inputs=image, outputs=label).launch()
```
This code will produce the interface below. The interface gives you a way to test
Inception Net by dragging and dropping images, and also allows you to use naturally modify the input image using image editing tools that
appear when you click EDIT. Notice here we provided actual `gradio.inputs` and `gradio.outputs` objects to the Interface
function instead of using string shortcuts. This lets us use built-in preprocessing (e.g. image resizing)
and postprocessing (e.g. choosing the number of labels to display) provided by these
interfaces.
<p align="center">
<img src="https://i.ibb.co/BtRNc62/inception-net.png" alt="drawing"/>
</p>
You can supply your own model instead of the pretrained model above, as well as use different kinds of models or functions. Here's a list of the interfaces we currently support, along with their preprocessing / postprocessing parameters:
**Input Interfaces**:
- `Sketchpad(shape=(28, 28), invert_colors=True, flatten=False, scale=1/255, shift=0, dtype='float64')`
- `Webcam(image_width=224, image_height=224, num_channels=3, label=None)`
- `Textbox(lines=1, placeholder=None, label=None, numeric=False)`
- `Radio(choices, label=None)`
- `Dropdown(choices, label=None)`
- `CheckboxGroup(choices, label=None)`
- `Slider(minimum=0, maximum=100, default=None, label=None)`
- `Image(shape=(224, 224, 3), image_mode='RGB', scale=1/127.5, shift=-1, label=None)`
- `Microphone()`
**Output Interfaces**:
- `Label(num_top_classes=None, label=None)`
- `KeyValues(label=None)`
- `Textbox(lines=1, placeholder=None, label=None)`
- `Image(label=None, plot=False)`
Interfaces can also be combined together, for multiple-input or multiple-output models.
### 2. Real-Time MNIST [![alt text](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LXJqwdkZNkt1J_yfLWQ3FLxbG2cAF8p4?usp=sharing)
Let's wrap a fun `Sketchpad`-to-`Label` UI around MNIST. For this example, we'll take advantage of the `live`
feature in the library. Set `live=True` inside `Interface()`> to have it run continuous predictions.
We've abstracted the model training from the code below, but you can see the full code on the colab link.
```python
import tensorflow as tf
import gradio as gr
from urllib.request import urlretrieve
urlretrieve("https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5","mnist-model.h5")
model = tf.keras.models.load_model("mnist-model.h5")
def recognize_digit(inp):
prediction = model.predict(inp.reshape(1, 28, 28, 1)).tolist()[0]
return {str(i): prediction[i] for i in range(10)}
sketchpad = gr.inputs.Sketchpad()
label = gr.outputs.Label(num_top_classes=3)
gr.Interface(fn=recognize_digit, inputs=sketchpad,
outputs=label, live=True).launch()
```
This code will produce the interface below.
<p align="center">
<img src="https://i.ibb.co/9n2mGgk/mnist-live.png" alt="drawing"/>
</p>
## Contributing:
If you would like to contribute and your contribution is small, you can directly open a pull request (PR). If you would like to contribute a larger feature, we recommend first creating an issue with a proposed design for discussion. Please see our contributing guidelines for more info.
## License:
Gradio is licensed under the Apache License 2.0
## See more:
You can find many more examples (like GPT-2, model comparison, multiple inputs, and numerical interfaces) as well as more info on usage on our website: www.gradio.app
See, also, the accompanying paper: ["Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild"](https://arxiv.org/pdf/1906.02569.pdf), *ICML HILL 2019*, and please use the citation below.
```
@article{abid2019gradio,
@ -22,80 +165,4 @@ year={2019}
}
```
To get a sense of `gradio`, take a look at the at the `examples` and `demo` folders, or read on below! And be sure to visit the gradio website: www.gradio.app.
## Installation
```
pip install gradio
```
(you may need to replace `pip` with `pip3` if you're running `python3`).
## Usage
Gradio is very easy to use with your existing code. Here's a working example:
```python
import gradio
import tensorflow as tf
from imagenetlabels import idx_to_labels
def classify_image(inp):
inp = inp.reshape((1, 224, 224, 3))
prediction = mobile_net.predict(inp).flatten()
return {idx_to_labels[i].split(',')[0]: float(prediction[i]) for i in range(1000)}
imagein = gradio.inputs.Image(shape=(224, 224, 3))
label = gradio.outputs.Label(num_top_classes=3)
gr.Interface(classify_image, imagein, label, capture_session=True).launch();
```
![alt text](https://i.ibb.co/nM97z2B/image-interface.png)
You can supply your own model instead of the pretrained model above, as well as use different kinds of models or functions. Changing the `input` and `output` parameters in the `Interface` face object allow you to create different interfaces, depending on the needs of your model. Take a look at the python notebooks for more examples. The currently supported interfaces are as follows:
**Input interfaces**:
* Sketchpad
* ImageUplaod
* Webcam
* Textbox
**Output interfaces**:
* Label
* Textbox
## Screenshots
Here are a few screenshots that show examples of gradio interfaces
#### MNIST Digit Recognition (Input: Sketchpad, Output: Label)
```python
sketchpad = Sketchpad()
label = Label(num_top_classes=4)
gradio.Interface(predict, sketchpad, label).launch();
```
![alt text](https://i.ibb.co/CV8Kk3D/sketchpad-interface.png)
#### Human DNA Variant Effect Prediction (Input: Textbox, Output: Label)
```python
gradio.Interface(predict, 'textbox', 'label').launch()
```
![alt text](https://i.ibb.co/C7GXDDQ/label-interface.png)
### Contributing:
If you would like to contribute and your contribution is small, you can directly open a pull request (PR). If you would like to contribute a larger feature, we recommend first creating an issue with a proposed design for discussion. Please see our contributing guidelines for more info.
### License:
Gradio is licensed under the Apache License 2.0
### See more:
Find more info on usage here: www.gradio.app.

View File

@ -40,12 +40,6 @@ class AbstractInput(ABC):
"""
return {"label": self.label}
def sample_inputs(self):
"""
An interface can optionally implement a method that sends a list of sample inputs for inference.
"""
return []
def preprocess(self, inp):
"""
By default, no pre-processing is applied to text.
@ -67,17 +61,12 @@ class AbstractInput(ABC):
class Sketchpad(AbstractInput):
def __init__(self, cast_to="numpy", shape=(28, 28), invert_colors=True,
flatten=False, scale=1/255, shift=0,
dtype='float64', sample_inputs=None, label=None):
def __init__(self, shape=(28, 28), invert_colors=True,
flatten=False, label=None):
self.image_width = shape[0]
self.image_height = shape[1]
self.invert_colors = invert_colors
self.flatten = flatten
self.scale = scale
self.shift = shift
self.dtype = dtype
self.sample_inputs = sample_inputs
super().__init__(label)
@classmethod
@ -101,8 +90,6 @@ class Sketchpad(AbstractInput):
array = np.array(im).flatten().reshape(1, self.image_width * self.image_height)
else:
array = np.array(im).flatten().reshape(1, self.image_width, self.image_height)
array = array * self.scale + self.shift
array = array.astype(self.dtype)
return array
def process_example(self, example):
@ -136,8 +123,7 @@ class Webcam(AbstractInput):
class Textbox(AbstractInput):
def __init__(self, sample_inputs=None, lines=1, placeholder=None, default=None, label=None, numeric=False):
self.sample_inputs = sample_inputs
def __init__(self, lines=1, placeholder=None, default=None, numeric=False, label=None):
self.lines = lines
self.placeholder = placeholder
self.default = default
@ -227,7 +213,7 @@ class Slider(AbstractInput):
@classmethod
def get_shortcut_implementations(cls):
return {
"checkbox": {},
"slider": {},
}
@ -243,8 +229,7 @@ class Checkbox(AbstractInput):
class Image(AbstractInput):
def __init__(self, cast_to=None, shape=(224, 224), image_mode='RGB', label=None):
self.cast_to = cast_to
def __init__(self, shape=(224, 224), image_mode='RGB', label=None):
self.image_width = shape[0]
self.image_height = shape[1]
self.image_mode = image_mode
@ -264,29 +249,10 @@ class Image(AbstractInput):
**super().get_template_context()
}
def cast_to_base64(self, inp):
return inp
def cast_to_im(self, inp):
return preprocessing_utils.decode_base64_to_image(inp)
def cast_to_numpy(self, inp):
im = self.cast_to_im(inp)
arr = np.array(im).flatten()
return arr
def preprocess(self, inp):
"""
Default preprocessing method for is to convert the picture to black and white and resize to be 48x48
"""
cast_to_type = {
"base64": self.cast_to_base64,
"numpy": self.cast_to_numpy,
"pillow": self.cast_to_im
}
if self.cast_to:
return cast_to_type[self.cast_to](inp)
im = preprocessing_utils.decode_base64_to_image(inp)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
@ -303,6 +269,8 @@ class Image(AbstractInput):
class Microphone(AbstractInput):
def __init__(self, label=None):
super().__init__(label)
def preprocess(self, inp):
"""

View File

@ -19,9 +19,15 @@ import inspect
from IPython import get_ipython
import sys
import weakref
import analytics
import socket
PKG_VERSION_URL = "https://gradio.app/api/pkg-version"
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
analytics_url = 'https://api.gradio.app/'
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
class Interface:
@ -89,6 +95,21 @@ class Interface:
self.simple_server = None
Interface.instances.add(self)
data = {'fn': fn,
'inputs': inputs,
'outputs': outputs,
'saliency': saliency,
'live': live,
'capture_session': capture_session,
'host_name': hostname,
'ip_address': ip_address
}
try:
requests.post(analytics_url + 'gradio-initiated-analytics/',
data=data)
except requests.ConnectionError:
print("gradio-initiated-analytics/ Connection Error")
def get_config_file(self):
config = {
"input_interfaces": [
@ -184,6 +205,12 @@ class Interface:
processed_input = self.input_interface.preprocess(msg)
prediction = self.predict(processed_input)
except Exception as e:
data = {'error': e}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("gradio-error-analytics/ Connection Error")
if self.verbose:
print("\n----------")
print(
@ -194,6 +221,12 @@ class Interface:
try:
_ = self.output_interface.postprocess(prediction)
except Exception as e:
data = {'error': e}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("gradio-error-analytics/ Connection Error")
if self.verbose:
print("\n----------")
print(
@ -250,6 +283,12 @@ class Interface:
is_colab = True
print("Google colab notebook detected.")
except NameError:
data = {'error': 'NameError in launch method'}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("Connection Error")
pass
try:
@ -278,6 +317,12 @@ class Interface:
share_url = networking.setup_tunnel(server_port)
print("Running on External URL:", share_url)
except RuntimeError:
data = {'error': 'RuntimeError in launch method'}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("Connection Error")
share_url = None
if self.verbose:
print(strings.en["NGROK_NO_INTERNET"])
@ -343,6 +388,19 @@ class Interface:
sys.stdout.flush()
time.sleep(0.1)
launch_method = 'browser' if inbrowser else 'inline'
data = {'launch_method': launch_method,
'is_google_colab': is_colab,
'is_sharing_on': share,
'share_url': share_url,
'host_name': hostname,
'ip_address': ip_address
}
try:
requests.post(analytics_url + 'gradio-hosted-launched-analytics/',
data=data)
except requests.ConnectionError:
print("Connection Error")
return httpd, path_to_local_server, share_url
@classmethod

View File

@ -14,7 +14,7 @@ from gradio.tunneling import create_tunnel
import urllib.request
from shutil import copyfile
import requests
import os
import sys
INITIAL_PORT_VALUE = (
@ -117,7 +117,6 @@ def get_first_available_port(initial, final):
def serve_files_in_background(interface, port, directory_to_serve=None, server_name=LOCALHOST_NAME):
class HTTPHandler(SimpleHTTPRequestHandler):
"""This handler uses server.base_path instead of always using os.getcwd()"""
def _set_headers(self):
self.send_response(200)
self.send_header("Content-type", "application/json")
@ -134,7 +133,6 @@ def serve_files_in_background(interface, port, directory_to_serve=None, server_n
def do_POST(self):
# Read body of the request.
if self.path == "/api/predict/":
# Make the prediction.
self._set_headers()
@ -198,12 +196,13 @@ def serve_files_in_background(interface, port, directory_to_serve=None, server_n
# Now loop forever
def serve_forever():
# try:
try:
while True:
# sys.stdout.flush()
sys.stdout.flush()
httpd.serve_forever()
# except (KeyboardInterrupt, OSError):
# httpd.server_close()
except (KeyboardInterrupt, OSError):
httpd.shutdown()
httpd.server_close()
thread = threading.Thread(target=serve_forever, daemon=False)
thread.start()
@ -215,13 +214,11 @@ def start_simple_server(interface, directory_to_serve=None, server_name=None):
port = get_first_available_port(
INITIAL_PORT_VALUE, INITIAL_PORT_VALUE + TRY_NUM_PORTS
)
httpd = serve_files_in_background(
interface, port, directory_to_serve, server_name)
httpd = serve_files_in_background(interface, port, directory_to_serve, server_name)
return port, httpd
def close_server(server):
server.shutdown()
server.server_close()

View File

@ -10,6 +10,7 @@ import json
from gradio import preprocessing_utils
import datetime
import operator
from numbers import Number
# Where to find the static resources associated with each template.
BASE_OUTPUT_INTERFACE_JS_PATH = 'static/js/interfaces/output/{}.js'
@ -53,7 +54,7 @@ class Label(AbstractOutput):
super().__init__(label)
def postprocess(self, prediction):
if isinstance(prediction, str):
if isinstance(prediction, str) or isinstance(prediction, Number):
return {"label": prediction}
elif isinstance(prediction, dict):
sorted_pred = sorted(
@ -104,15 +105,11 @@ class KeyValues(AbstractOutput):
class Textbox(AbstractOutput):
def __init__(self, lines=1, placeholder=None, label=None):
self.lines = lines
self.placeholder = placeholder
def __init__(self, label=None):
super().__init__(label)
def get_template_context(self):
return {
"lines": self.lines,
"placeholder": self.placeholder,
**super().get_template_context()
}
@ -121,7 +118,6 @@ class Textbox(AbstractOutput):
return {
"text": {},
"number": {},
"textbox": {"lines": 7}
}
def postprocess(self, prediction):
@ -133,7 +129,7 @@ class Textbox(AbstractOutput):
class Image(AbstractOutput):
def __init__(self, label=None, plot=False):
def __init__(self, plot=False, label=None):
self.plot = plot
super().__init__(label)

View File

@ -1,5 +1,4 @@
.output_text {
resize: none;
width: 100%;
font-size: 18px;
outline: none;
@ -8,4 +7,6 @@
border: solid 1px black;
box-sizing: border-box;
padding: 4px;
min-height: 30px;
font-family: monospace;
}

View File

@ -47,7 +47,11 @@ var io_master_template = {
}
if (this.config.live) {
this.gather();
var io = this;
var refresh_lag = this.config.refresh_lag || 0;
window.setTimeout(function() {
io.gather();
}, refresh_lag);
} else {
this.target.find(".loading").addClass("invisible");
this.target.find(".output_interface").removeClass("invisible");

View File

@ -0,0 +1,73 @@
var io_master_template = {
gather: function() {
this.clear();
for (let iface of this.input_interfaces) {
iface.submit();
}
},
clear: function() {
this.last_input = new Array(this.input_interfaces.length);
this.input_count = 0;
},
input: function(interface_id, data) {
this.last_input[interface_id] = data;
this.input_count += 1;
if (this.input_count == this.input_interfaces.length) {
this.submit();
}
},
submit: function() {
let io = this;
if (!this.config.live) {
this.target.find(".loading").removeClass("invisible");
this.target.find(".loading_in_progress").show();
this.target.find(".loading_failed").hide();
this.target.find(".output_interface").addClass("invisible");
this.target.find(".output_interfaces .panel_header").addClass("invisible");
}
this.fn(this.last_input).then((output) => {
io.output(output);
}).catch((error) => {
console.error(error);
this.target.find(".loading_in_progress").hide();
this.target.find(".loading_failed").show();
})
},
output: function(data) {
this.last_output = data["data"];
for (let i = 0; i < this.output_interfaces.length; i++) {
this.output_interfaces[i].output(data["data"][i]);
}
if (data["durations"]) {
let ratio = this.output_interfaces.length / data["durations"].length;
for (let i = 0; i < this.output_interfaces.length; i = i + ratio) {
this.output_interfaces[i].target.parent().find(`.loading_time[interface="${i + ratio - 1}"]`).text("Latency: " + ((data["durations"][i / ratio])).toFixed(2) + "s");
}
}
if (this.config.live) {
this.gather();
} else {
this.target.find(".loading").addClass("invisible");
this.target.find(".output_interface").removeClass("invisible");
this.target.find(".output_interfaces .panel_header").removeClass("invisible");
}
},
flag: function(message) {
var post_data = {
'data': {
'input_data' : toStringIfObject(this.last_input) ,
'output_data' : toStringIfObject(this.last_output),
'message' : message
}
}
$.ajax({type: "POST",
url: "/api/flag/",
data: JSON.stringify(post_data),
success: function(output){
console.log("Flagging successful")
},
});
}
};

View File

@ -1,13 +1,7 @@
const textbox_output = {
html: `<textarea readonly class="output_text"></textarea>`,
html: `<div class="output_text"></div>`,
init: function(opts) {
if (opts.lines) {
this.target.find(".output_text").attr("rows", opts.lines).css("height", "auto");
this.target.css("height", "auto");
}
if (opts.placeholder) {
this.target.find(".output_text").attr("placeholder", opts.placeholder)
}
},
output: function(data) {
this.target.find(".output_text").text(data);

View File

@ -31,7 +31,7 @@
<a href="https://gradio.app"><img src="../static/img/logo_inline.png" /></a>
</nav>
<div id="share" class="invisible">
Live at <a id="share-link"></a>.
Live at <a id="share-link" target="_blank"></a>.
<button id="share-copy">Copy Link</button>
</div>
<div class="container">
@ -40,7 +40,7 @@
</div>
<div id="interface_target" class="container"></div>
<div id="examples" class="container invisible">
<h3>Examples</h3>
<h3>Examples <small>(click to load)</small></h3>
<table>
</table>
</div>

View File

@ -1,48 +0,0 @@
#!/usr/bin/env python
# coding: utf-8
# In[2]:
# installing transformers
# !pip install -q git+https://github.com/huggingface/transformers.git
# !pip install -q tensorflow==2.1
# In[12]:
import tensorflow as tf
from transformers import TFGPT2LMHeadModel, GPT2Tokenizer
import gradio
# In[4]:
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
# add the EOS token as PAD token to avoid warnings
model = TFGPT2LMHeadModel.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
# In[15]:
def predict(inp):
input_ids = tokenizer.encode(inp, return_tensors='tf')
beam_output = model.generate(input_ids, max_length=49, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
output = tokenizer.decode(beam_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return ".".join(output.split(".")[:-1]) + "."
# In[18]:
gradio.Interface(predict,"textbox","textbox").launch(inbrowser=True)
# In[ ]:

View File

@ -1,5 +1,5 @@
import gradio as gr
from time import sleep
def answer_question(quantity, animal, place, activity_list, morning, etc):
return f"""The {quantity} {animal}s went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}""", "OK"
@ -15,8 +15,8 @@ gr.Interface(answer_question,
gr.inputs.Textbox(default="What else?"),
],
[
gr.outputs.Textbox(lines=8),
gr.outputs.Textbox(lines=1),
gr.outputs.Textbox(),
gr.outputs.Textbox(),
],
examples=[
[2, "cat", "park", ["ran", "swam"], True],

View File

@ -3,44 +3,22 @@ import gradio
import os
from tensorflow.keras.layers import *
import gradio as gr
from urllib.request import urlretrieve
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train.reshape(-1,784) / 255.0, x_test.reshape(-1,784) / 255.0
def get_trained_model(n):
model = tf.keras.models.Sequential()
model.add(Reshape((28, 28, 1), input_shape=(784,)))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train[:n], y_train[:n], epochs=2)
print(model.evaluate(x_test, y_test))
return model
urlretrieve("https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5","mnist-model.h5")
model = tf.keras.models.load_model("mnist-model.h5")
if not os.path.exists("models/mnist.h5"):
model = get_trained_model(n=50000)
model.save('models/mnist.h5')
else:
model = tf.keras.models.load_model('models/mnist.h5')
graph = tf.get_default_graph()
sess = tf.keras.backend.get_session()
def recognize_digit(image):
with graph.as_default():
with sess.as_default():
prediction = model.predict(image).tolist()[0]
return {str(i): prediction[i] for i in range(10)}
gr.Interface(
recognize_digit,
gradio.inputs.Sketchpad(flatten=True),
gradio.outputs.Label(num_top_classes=3),
live=True
live=True,
capture_session=True,
).launch()

View File

@ -2,6 +2,7 @@ import gradio as gr
import numpy as np
from time import time
def flip(image):
start = time()
return image, {
@ -9,6 +10,7 @@ def flip(image):
"2": 0.8
}
def flip2(image):
start = time()
return np.fliplr(image), time() - start

View File

@ -3,6 +3,7 @@ import random
import matplotlib.pyplot as plt
import numpy as np
def plot_forecast(final_year, companies, noise, show_legend, point_style):
start_year = 2020
x = np.arange(start_year, final_year + 1)
@ -17,6 +18,7 @@ def plot_forecast(final_year, companies, noise, show_legend, point_style):
plt.legend(companies)
return plt
gr.Interface(plot_forecast,
[
gr.inputs.Radio([2025, 2030, 2035, 2040],

View File

@ -1,177 +0,0 @@
#!/usr/bin/env python
# coding: utf-8
# In[9]:
import tensorflow as tf
import sys
import gradio
from tensorflow.keras.layers import *
from tensorflow.keras.datasets import imdb
import json
from tensorflow.keras import backend as K
import numpy as np
# In[2]:
top_words = 5000 # Only keep the 5,000 most frequent words
max_word_length = 500 # The maximum length of the review should be 500 words (trim/pad otherwise)
# (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words);
# # save np.load
np_load_old = np.load
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
# # # call load_data with allow_pickle implicitly set to true
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words);
# # restore np.load for future normal usage
np.load = np_load_old
X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_word_length)
X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_word_length)
def get_trained_model(n):
model = tf.keras.models.Sequential()
model.add(Embedding(top_words, 32, input_length=max_word_length))
model.add(Dropout(0.2))
model.add(Conv1D(250, 3, padding='valid', activation='relu', strides=1))
model.add(GlobalMaxPooling1D())
model.add(Dense(250))
model.add(Dropout(0.2))
model.add(Activation('relu'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train[:n], y_train[:n], epochs=1, batch_size=128)
print(model.evaluate(X_test[:n], y_test[:n]))
return model
# In[3]:
model = get_trained_model(n=1000) #25000
# In[4]:
graph = tf.get_default_graph()
sess = tf.keras.backend.get_session()
# In[5]:
NUM_SPECIAL_TOKENS = 3
PAD_TOKEN = 0
START_TOKEN = 1
UNK_TOKEN = 2
word_to_id = tf.keras.datasets.imdb.get_word_index()
word_to_id = {k: (v + NUM_SPECIAL_TOKENS) for k, v in word_to_id.items()}
id_to_word = {value: key for key, value in word_to_id.items()}
id_to_word[PAD_TOKEN] = "" # Padding tokens are converted to empty strings.
id_to_word[START_TOKEN] = "" # Start tokens are converted to empty strings.
id_to_word[UNK_TOKEN] = "UNK" # <UNK> tokens are converted to "UNK".
def decode_vector_to_text(vector):
text = " ".join(id_to_word[id] for id in vector if id >= 2)
return text
def encode_text_to_vector(text, max_word_length=500, top_words=5000):
text_vector = text.split(" ")
encoded_vector = [
word_to_id.get(element, UNK_TOKEN) if word_to_id.get(element, UNK_TOKEN) < top_words else UNK_TOKEN for element
in text_vector]
encoded_vector = [START_TOKEN] + encoded_vector
if len(encoded_vector) < max_word_length:
encoded_vector = (max_word_length - len(encoded_vector)) * [PAD_TOKEN] + encoded_vector
else:
encoded_vector = encoded_vector[:max_word_length]
return encoded_vector
def preprocessing(text):
new = encode_text_to_vector(text)
return tf.keras.preprocessing.sequence.pad_sequences([new], maxlen=max_word_length)
def postprocessing(pred):
return {
"Positive review": f"{pred[0][0]}",
"Negative review": f"{1-pred[0][0]}"
}
def predict(inp):
inp = preprocessing(inp)
with graph.as_default():
with sess.as_default():
prediction = model.predict(inp)
prediction = postprocessing(prediction)
return prediction
def saliency(input, output):
with graph.as_default():
with sess.as_default():
processed_input = preprocessing(input)
processed_output = output
output = 0 if float(output["Positive review"]) > 0.5 else 1
input_tensors = [model.layers[0].input, K.learning_phase()]
saliency_input = model.layers[1].input
saliency_output = model.layers[-1].output[:, output]
gradients = model.optimizer.get_gradients(saliency_output, saliency_input)
compute_gradients = K.function(inputs=input_tensors, outputs=gradients)
saliency_graph = compute_gradients(processed_input.reshape(1, 500))[0]
saliency_graph = saliency_graph.reshape(500, 32)
saliency_graph = np.abs(saliency_graph).sum(axis=1)
normalized_saliency = (saliency_graph - saliency_graph.min()) / (saliency_graph.max() - saliency_graph.min())
start_idx = np.where(processed_input[0] == START_TOKEN)[0][0]
heat_map = []
counter = 0
words = input.split(" ")
for i in range(start_idx + 1, 500):
heat_map.extend([normalized_saliency[i]] * len(words[counter]))
heat_map.append(0) # zero saliency value assigned to the spaces between words
counter += 1
return np.array(heat_map)
# In[6]:
textbox = gradio.inputs.Textbox()
label = gradio.outputs.Label()
interface = gradio.Interface(inputs=textbox, outputs=label, fn=predict, saliency=saliency)
# In[8]:
interface.launch(inbrowser=True, share=False)
# In[ ]:
# In[ ]:

View File

@ -1,6 +1,6 @@
Metadata-Version: 1.0
Name: gradio
Version: 0.9.8
Version: 0.9.9.3
Summary: Python library for easily interacting with trained machine learning models
Home-page: https://github.com/gradio-app/gradio-UI
Author: Abubakar Abid

View File

@ -50,6 +50,7 @@ gradio/static/img/vendor/icon-b.svg
gradio/static/img/vendor/icon-c.svg
gradio/static/img/vendor/icon-d.svg
gradio/static/js/all_io.js
gradio/static/js/all_io.js.bak
gradio/static/js/gradio.js
gradio/static/js/utils.js
gradio/static/js/interfaces/input/checkbox.js

View File

@ -4,3 +4,4 @@ paramiko
scipy
IPython
scikit-image
analytics-python

View File

@ -40,12 +40,6 @@ class AbstractInput(ABC):
"""
return {"label": self.label}
def sample_inputs(self):
"""
An interface can optionally implement a method that sends a list of sample inputs for inference.
"""
return []
def preprocess(self, inp):
"""
By default, no pre-processing is applied to text.
@ -67,17 +61,12 @@ class AbstractInput(ABC):
class Sketchpad(AbstractInput):
def __init__(self, cast_to="numpy", shape=(28, 28), invert_colors=True,
flatten=False, scale=1/255, shift=0,
dtype='float64', sample_inputs=None, label=None):
def __init__(self, shape=(28, 28), invert_colors=True,
flatten=False, label=None):
self.image_width = shape[0]
self.image_height = shape[1]
self.invert_colors = invert_colors
self.flatten = flatten
self.scale = scale
self.shift = shift
self.dtype = dtype
self.sample_inputs = sample_inputs
super().__init__(label)
@classmethod
@ -101,8 +90,6 @@ class Sketchpad(AbstractInput):
array = np.array(im).flatten().reshape(1, self.image_width * self.image_height)
else:
array = np.array(im).flatten().reshape(1, self.image_width, self.image_height)
array = array * self.scale + self.shift
array = array.astype(self.dtype)
return array
def process_example(self, example):
@ -136,8 +123,7 @@ class Webcam(AbstractInput):
class Textbox(AbstractInput):
def __init__(self, sample_inputs=None, lines=1, placeholder=None, default=None, label=None, numeric=False):
self.sample_inputs = sample_inputs
def __init__(self, lines=1, placeholder=None, default=None, numeric=False, label=None):
self.lines = lines
self.placeholder = placeholder
self.default = default
@ -227,7 +213,7 @@ class Slider(AbstractInput):
@classmethod
def get_shortcut_implementations(cls):
return {
"checkbox": {},
"slider": {},
}
@ -283,6 +269,8 @@ class Image(AbstractInput):
class Microphone(AbstractInput):
def __init__(self, label=None):
super().__init__(label)
def preprocess(self, inp):
"""

View File

@ -19,9 +19,15 @@ import inspect
from IPython import get_ipython
import sys
import weakref
import analytics
import socket
PKG_VERSION_URL = "https://gradio.app/api/pkg-version"
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
analytics_url = 'https://api.gradio.app/'
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
class Interface:
@ -89,6 +95,21 @@ class Interface:
self.simple_server = None
Interface.instances.add(self)
data = {'fn': fn,
'inputs': inputs,
'outputs': outputs,
'saliency': saliency,
'live': live,
'capture_session': capture_session,
'host_name': hostname,
'ip_address': ip_address
}
try:
requests.post(analytics_url + 'gradio-initiated-analytics/',
data=data)
except requests.ConnectionError:
print("gradio-initiated-analytics/ Connection Error")
def get_config_file(self):
config = {
"input_interfaces": [
@ -184,6 +205,12 @@ class Interface:
processed_input = self.input_interface.preprocess(msg)
prediction = self.predict(processed_input)
except Exception as e:
data = {'error': e}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("gradio-error-analytics/ Connection Error")
if self.verbose:
print("\n----------")
print(
@ -194,6 +221,12 @@ class Interface:
try:
_ = self.output_interface.postprocess(prediction)
except Exception as e:
data = {'error': e}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("gradio-error-analytics/ Connection Error")
if self.verbose:
print("\n----------")
print(
@ -250,6 +283,12 @@ class Interface:
is_colab = True
print("Google colab notebook detected.")
except NameError:
data = {'error': 'NameError in launch method'}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("Connection Error")
pass
try:
@ -278,6 +317,12 @@ class Interface:
share_url = networking.setup_tunnel(server_port)
print("Running on External URL:", share_url)
except RuntimeError:
data = {'error': 'RuntimeError in launch method'}
try:
requests.post(analytics_url + 'gradio-error-analytics/',
data=data)
except requests.ConnectionError:
print("Connection Error")
share_url = None
if self.verbose:
print(strings.en["NGROK_NO_INTERNET"])
@ -343,6 +388,19 @@ class Interface:
sys.stdout.flush()
time.sleep(0.1)
launch_method = 'browser' if inbrowser else 'inline'
data = {'launch_method': launch_method,
'is_google_colab': is_colab,
'is_sharing_on': share,
'share_url': share_url,
'host_name': hostname,
'ip_address': ip_address
}
try:
requests.post(analytics_url + 'gradio-hosted-launched-analytics/',
data=data)
except requests.ConnectionError:
print("Connection Error")
return httpd, path_to_local_server, share_url
@classmethod

View File

@ -10,6 +10,7 @@ import json
from gradio import preprocessing_utils
import datetime
import operator
from numbers import Number
# Where to find the static resources associated with each template.
BASE_OUTPUT_INTERFACE_JS_PATH = 'static/js/interfaces/output/{}.js'
@ -53,8 +54,8 @@ class Label(AbstractOutput):
super().__init__(label)
def postprocess(self, prediction):
if isinstance(prediction, str):
return {"label": prediction}
if isinstance(prediction, str) or isinstance(prediction, Number):
return {"label": str(prediction)}
elif isinstance(prediction, dict):
sorted_pred = sorted(
prediction.items(),
@ -104,15 +105,11 @@ class KeyValues(AbstractOutput):
class Textbox(AbstractOutput):
def __init__(self, lines=1, placeholder=None, label=None):
self.lines = lines
self.placeholder = placeholder
def __init__(self, label=None):
super().__init__(label)
def get_template_context(self):
return {
"lines": self.lines,
"placeholder": self.placeholder,
**super().get_template_context()
}
@ -121,7 +118,6 @@ class Textbox(AbstractOutput):
return {
"text": {},
"number": {},
"textbox": {"lines": 7}
}
def postprocess(self, prediction):
@ -133,7 +129,7 @@ class Textbox(AbstractOutput):
class Image(AbstractOutput):
def __init__(self, label=None, plot=False):
def __init__(self, plot=False, label=None):
self.plot = plot
super().__init__(label)

View File

@ -1,5 +1,4 @@
.output_text {
resize: none;
width: 100%;
font-size: 18px;
outline: none;
@ -8,4 +7,6 @@
border: solid 1px black;
box-sizing: border-box;
padding: 4px;
min-height: 30px;
font-family: monospace;
}

View File

@ -47,7 +47,11 @@ var io_master_template = {
}
if (this.config.live) {
this.gather();
var io = this;
var refresh_lag = this.config.refresh_lag || 0;
window.setTimeout(function() {
io.gather();
}, refresh_lag);
} else {
this.target.find(".loading").addClass("invisible");
this.target.find(".output_interface").removeClass("invisible");

View File

@ -0,0 +1,73 @@
var io_master_template = {
gather: function() {
this.clear();
for (let iface of this.input_interfaces) {
iface.submit();
}
},
clear: function() {
this.last_input = new Array(this.input_interfaces.length);
this.input_count = 0;
},
input: function(interface_id, data) {
this.last_input[interface_id] = data;
this.input_count += 1;
if (this.input_count == this.input_interfaces.length) {
this.submit();
}
},
submit: function() {
let io = this;
if (!this.config.live) {
this.target.find(".loading").removeClass("invisible");
this.target.find(".loading_in_progress").show();
this.target.find(".loading_failed").hide();
this.target.find(".output_interface").addClass("invisible");
this.target.find(".output_interfaces .panel_header").addClass("invisible");
}
this.fn(this.last_input).then((output) => {
io.output(output);
}).catch((error) => {
console.error(error);
this.target.find(".loading_in_progress").hide();
this.target.find(".loading_failed").show();
})
},
output: function(data) {
this.last_output = data["data"];
for (let i = 0; i < this.output_interfaces.length; i++) {
this.output_interfaces[i].output(data["data"][i]);
}
if (data["durations"]) {
let ratio = this.output_interfaces.length / data["durations"].length;
for (let i = 0; i < this.output_interfaces.length; i = i + ratio) {
this.output_interfaces[i].target.parent().find(`.loading_time[interface="${i + ratio - 1}"]`).text("Latency: " + ((data["durations"][i / ratio])).toFixed(2) + "s");
}
}
if (this.config.live) {
this.gather();
} else {
this.target.find(".loading").addClass("invisible");
this.target.find(".output_interface").removeClass("invisible");
this.target.find(".output_interfaces .panel_header").removeClass("invisible");
}
},
flag: function(message) {
var post_data = {
'data': {
'input_data' : toStringIfObject(this.last_input) ,
'output_data' : toStringIfObject(this.last_output),
'message' : message
}
}
$.ajax({type: "POST",
url: "/api/flag/",
data: JSON.stringify(post_data),
success: function(output){
console.log("Flagging successful")
},
});
}
};

View File

@ -1,13 +1,7 @@
const textbox_output = {
html: `<textarea readonly class="output_text"></textarea>`,
html: `<div class="output_text"></div>`,
init: function(opts) {
if (opts.lines) {
this.target.find(".output_text").attr("rows", opts.lines).css("height", "auto");
this.target.css("height", "auto");
}
if (opts.placeholder) {
this.target.find(".output_text").attr("placeholder", opts.placeholder)
}
},
output: function(data) {
this.target.find(".output_text").text(data);

View File

@ -31,7 +31,7 @@
<a href="https://gradio.app"><img src="../static/img/logo_inline.png" /></a>
</nav>
<div id="share" class="invisible">
Live at <a id="share-link"></a>.
Live at <a id="share-link" target="_blank"></a>.
<button id="share-copy">Copy Link</button>
</div>
<div class="container">
@ -40,7 +40,7 @@
</div>
<div id="interface_target" class="container"></div>
<div id="examples" class="container invisible">
<h3>Examples</h3>
<h3>Examples <small>(click to load)</small></h3>
<table>
</table>
</div>

View File

@ -5,7 +5,7 @@ except ImportError:
setup(
name='gradio',
version='0.9.8',
version='0.9.9.3',
include_package_data=True,
description='Python library for easily interacting with trained machine learning models',
author='Abubakar Abid',
@ -20,5 +20,6 @@ setup(
'scipy',
'IPython',
'scikit-image',
'analytics-python',
],
)

View File

@ -7,13 +7,13 @@ import gradio.outputs
class TestInterface(unittest.TestCase):
def test_input_output_mapping(self):
io = gr.Interface(inputs='SketCHPad', outputs='textBOX', fn=lambda x: x)
io = gr.Interface(inputs='SketCHPad', outputs='TexT', fn=lambda x: x)
self.assertIsInstance(io.input_interfaces[0], gradio.inputs.Sketchpad)
self.assertIsInstance(io.output_interfaces[0], gradio.outputs.Textbox)
def test_input_interface_is_instance(self):
inp = gradio.inputs.Image()
io = gr.Interface(inputs=inp, outputs='textBOX', fn=lambda x: x)
io = gr.Interface(inputs=inp, outputs='teXT', fn=lambda x: x)
self.assertEqual(io.input_interfaces[0], inp)
def test_output_interface_is_instance(self):
@ -24,7 +24,7 @@ class TestInterface(unittest.TestCase):
def test_prediction(self):
def model(x):
return 2*x
io = gr.Interface(inputs='textbox', outputs='textBOX', fn=model)
io = gr.Interface(inputs='textbox', outputs='TEXT', fn=model)
self.assertEqual(io.predict[0](11), 22)

0
upload_to_pypi.sh Normal file → Executable file
View File