This commit is contained in:
dawoodkhan82 2020-07-09 16:24:26 -04:00
commit 24412d05ea
4 changed files with 26 additions and 31 deletions

View File

@ -20,13 +20,11 @@ from IPython import get_ipython
import sys import sys
import weakref import weakref
import analytics import analytics
import socket
PKG_VERSION_URL = "https://gradio.app/api/pkg-version" PKG_VERSION_URL = "https://gradio.app/api/pkg-version"
analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy" analytics.write_key = "uxIFddIEuuUcFLf9VgH2teTEtPlWdkNy"
analytics_url = 'https://api.gradio.app/' analytics_url = 'https://api.gradio.app/'
hostname = socket.gethostname()
try: try:
ip_address = requests.get('https://api.ipify.org').text ip_address = requests.get('https://api.ipify.org').text
except requests.ConnectionError: except requests.ConnectionError:
@ -104,15 +102,22 @@ class Interface:
'saliency': saliency, 'saliency': saliency,
'live': live, 'live': live,
'capture_session': capture_session, 'capture_session': capture_session,
'host_name': hostname,
'ip_address': ip_address 'ip_address': ip_address
} }
if self.capture_session:
try:
import tensorflow as tf
self.session = tf.get_default_graph(), \
tf.keras.backend.get_session()
except (ImportError, AttributeError): # If they are using TF >= 2.0 or don't have TF, just ignore this.
pass
try: try:
print("try initiated")
requests.post(analytics_url + 'gradio-initiated-analytics/', requests.post(analytics_url + 'gradio-initiated-analytics/',
data=data) data=data)
except requests.ConnectionError: except requests.ConnectionError:
print("gradio-initiated-analytics/ Connection Error") pass # do not push analytics if no network
def get_config_file(self): def get_config_file(self):
config = { config = {
@ -144,7 +149,6 @@ class Interface:
return config return config
def process(self, raw_input): def process(self, raw_input):
processed_input = [input_interface.preprocess( processed_input = [input_interface.preprocess(
raw_input[i]) for i, input_interface in raw_input[i]) for i, input_interface in
@ -214,7 +218,7 @@ class Interface:
requests.post(analytics_url + 'gradio-error-analytics/', requests.post(analytics_url + 'gradio-error-analytics/',
data=data) data=data)
except requests.ConnectionError: except requests.ConnectionError:
print("gradio-error-analytics/ Connection Error") pass # do not push analytics if no network
if self.verbose: if self.verbose:
print("\n----------") print("\n----------")
print( print(
@ -230,7 +234,7 @@ class Interface:
requests.post(analytics_url + 'gradio-error-analytics/', requests.post(analytics_url + 'gradio-error-analytics/',
data=data) data=data)
except requests.ConnectionError: except requests.ConnectionError:
print("gradio-error-analytics/ Connection Error") pass # do not push analytics if no network
if self.verbose: if self.verbose:
print("\n----------") print("\n----------")
print( print(
@ -262,14 +266,6 @@ class Interface:
# if validate and not self.validate_flag: # if validate and not self.validate_flag:
# self.validate() # self.validate()
if self.capture_session:
try:
import tensorflow as tf
self.session = tf.get_default_graph(), \
tf.keras.backend.get_session()
except (ImportError, AttributeError): # If they are using TF >= 2.0 or don't have TF, just ignore this.
pass
output_directory = tempfile.mkdtemp() output_directory = tempfile.mkdtemp()
# Set up a port to serve the directory containing the static files with interface. # Set up a port to serve the directory containing the static files with interface.
server_port, httpd = networking.start_simple_server(self, output_directory, self.server_name) server_port, httpd = networking.start_simple_server(self, output_directory, self.server_name)
@ -291,7 +287,7 @@ class Interface:
requests.post(analytics_url + 'gradio-error-analytics/', requests.post(analytics_url + 'gradio-error-analytics/',
data=data) data=data)
except requests.ConnectionError: except requests.ConnectionError:
print("Connection Error") pass # do not push analytics if no network
pass pass
try: try:
@ -325,7 +321,7 @@ class Interface:
requests.post(analytics_url + 'gradio-error-analytics/', requests.post(analytics_url + 'gradio-error-analytics/',
data=data) data=data)
except requests.ConnectionError: except requests.ConnectionError:
print("Connection Error") pass # do not push analytics if no network
share_url = None share_url = None
if self.verbose: if self.verbose:
print(strings.en["NGROK_NO_INTERNET"]) print(strings.en["NGROK_NO_INTERNET"])
@ -397,14 +393,13 @@ class Interface:
'is_google_colab': is_colab, 'is_google_colab': is_colab,
'is_sharing_on': share, 'is_sharing_on': share,
'share_url': share_url, 'share_url': share_url,
'host_name': hostname,
'ip_address': ip_address 'ip_address': ip_address
} }
try: try:
requests.post(analytics_url + 'gradio-launched-analytics/', requests.post(analytics_url + 'gradio-launched-analytics/',
data=data) data=data)
except requests.ConnectionError: except requests.ConnectionError:
print("Connection Error") pass # do not push analytics if no network
return httpd, path_to_local_server, share_url return httpd, path_to_local_server, share_url
@classmethod @classmethod

View File

@ -1,6 +1,6 @@
Metadata-Version: 1.0 Metadata-Version: 1.0
Name: gradio Name: gradio
Version: 0.9.9.7 Version: 0.9.9.9
Summary: Python library for easily interacting with trained machine learning models Summary: Python library for easily interacting with trained machine learning models
Home-page: https://github.com/gradio-app/gradio-UI Home-page: https://github.com/gradio-app/gradio-UI
Author: Abubakar Abid Author: Abubakar Abid

View File

@ -104,6 +104,15 @@ class Interface:
'capture_session': capture_session, 'capture_session': capture_session,
'ip_address': ip_address 'ip_address': ip_address
} }
if self.capture_session:
try:
import tensorflow as tf
self.session = tf.get_default_graph(), \
tf.keras.backend.get_session()
except (ImportError, AttributeError): # If they are using TF >= 2.0 or don't have TF, just ignore this.
pass
try: try:
requests.post(analytics_url + 'gradio-initiated-analytics/', requests.post(analytics_url + 'gradio-initiated-analytics/',
data=data) data=data)
@ -140,7 +149,6 @@ class Interface:
return config return config
def process(self, raw_input): def process(self, raw_input):
processed_input = [input_interface.preprocess( processed_input = [input_interface.preprocess(
raw_input[i]) for i, input_interface in raw_input[i]) for i, input_interface in
@ -258,14 +266,6 @@ class Interface:
# if validate and not self.validate_flag: # if validate and not self.validate_flag:
# self.validate() # self.validate()
if self.capture_session:
try:
import tensorflow as tf
self.session = tf.get_default_graph(), \
tf.keras.backend.get_session()
except (ImportError, AttributeError): # If they are using TF >= 2.0 or don't have TF, just ignore this.
pass
output_directory = tempfile.mkdtemp() output_directory = tempfile.mkdtemp()
# Set up a port to serve the directory containing the static files with interface. # Set up a port to serve the directory containing the static files with interface.
server_port, httpd = networking.start_simple_server(self, output_directory, self.server_name) server_port, httpd = networking.start_simple_server(self, output_directory, self.server_name)

View File

@ -5,7 +5,7 @@ except ImportError:
setup( setup(
name='gradio', name='gradio',
version='0.9.9.7', version='0.9.9.9',
include_package_data=True, include_package_data=True,
description='Python library for easily interacting with trained machine learning models', description='Python library for easily interacting with trained machine learning models',
author='Abubakar Abid', author='Abubakar Abid',