mirror of
https://github.com/gradio-app/gradio.git
synced 2025-03-31 12:20:26 +08:00
updates demos
This commit is contained in:
parent
b74f95a443
commit
2405239b3e
@ -1,37 +0,0 @@
|
||||
import gradio as gr
|
||||
|
||||
def fraud_detection(income, assets):
|
||||
income *= 1000
|
||||
total_asset_cost = sum(assets["Cost"])
|
||||
total_deductible = sum(assets[assets["Deduct"]]["Cost"])
|
||||
if total_asset_cost > income / 2:
|
||||
fraud_prob = max(total_asset_cost / income, total_deductible / total_asset_cost)
|
||||
else:
|
||||
# Benford's law
|
||||
expected_digit_distribution = {1: .301, 2: .176, 3: .125}
|
||||
numbers = [income] + list(assets["Cost"])
|
||||
digit_distribution = {i: 0 for i in range(10)}
|
||||
for number in numbers:
|
||||
leading_digit = str(int(number))[0]
|
||||
digit_distribution[int(leading_digit)] += 1
|
||||
fraud_prob = 0
|
||||
for digit, expected in expected_digit_distribution.items():
|
||||
fraud_prob += abs(digit_distribution[digit] / len(numbers) - expected) / 10
|
||||
|
||||
fraud_prob = min(1, fraud_prob)
|
||||
return {"fraud": fraud_prob, "standard": 1 - fraud_prob}
|
||||
|
||||
io = gr.Interface(
|
||||
fraud_detection,
|
||||
[
|
||||
gr.inputs.Slider(1, 500, label="Income (in thousands)"),
|
||||
gr.inputs.Dataframe(
|
||||
headers=["Item", "Cost", "Deduct"],
|
||||
datatype=["str", "number", "bool"],
|
||||
label="Assets Purchased this Year"
|
||||
)
|
||||
],
|
||||
"label"
|
||||
)
|
||||
|
||||
io.launch()
|
@ -1,7 +1,7 @@
|
||||
# Demo: (Image) -> (Label)
|
||||
|
||||
import gradio as gr
|
||||
import tensorflow as tf
|
||||
# from vis.utils import utils
|
||||
# from vis.visualization import visualize_cam
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
@ -1 +0,0 @@
|
||||
++++++++++++
|
@ -1,8 +1,7 @@
|
||||
# Demo: (Textbox) -> (Label)
|
||||
|
||||
import gradio as gr
|
||||
|
||||
gr.reset_all()
|
||||
|
||||
|
||||
def longest_word(text):
|
||||
words = text.split(" ")
|
||||
lengths = [len(word) for word in words]
|
||||
|
BIN
demo/screenshots/image_classifier/1.png
Normal file
BIN
demo/screenshots/image_classifier/1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 655 KiB |
BIN
demo/screenshots/main_note/1.png
Normal file
BIN
demo/screenshots/main_note/1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 75 KiB |
BIN
demo/screenshots/tax_calculator/1.png
Normal file
BIN
demo/screenshots/tax_calculator/1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 99 KiB |
BIN
demo/screenshots/titanic_survival/1.png
Normal file
BIN
demo/screenshots/titanic_survival/1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 95 KiB |
@ -1,3 +1,5 @@
|
||||
# Demo: (Textbox) -> (Label)
|
||||
|
||||
import gradio as gr
|
||||
import nltk
|
||||
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
||||
|
43
demo/tax_calculator.py
Normal file
43
demo/tax_calculator.py
Normal file
@ -0,0 +1,43 @@
|
||||
# Demo: (Number, Radio, Dataframe) -> (Textbox)
|
||||
|
||||
import gradio as gr
|
||||
|
||||
def tax_calculator(income, marital_status, assets):
|
||||
tax_brackets = [
|
||||
(10, 0),
|
||||
(25, 8),
|
||||
(60, 12),
|
||||
(120, 20),
|
||||
(250, 30)
|
||||
]
|
||||
total_deductible = sum(assets[assets["Deduct"]]["Cost"])
|
||||
taxable_income = income - total_deductible
|
||||
|
||||
total_tax = 0
|
||||
for bracket, rate in tax_brackets:
|
||||
if taxable_income > bracket:
|
||||
total_tax += (taxable_income - bracket) * rate / 100
|
||||
|
||||
if marital_status == "Married":
|
||||
total_tax *= 0.75
|
||||
elif marital_status == "Divorced":
|
||||
total_tax *= 0.8
|
||||
|
||||
return round(total_tax)
|
||||
|
||||
io = gr.Interface(
|
||||
tax_calculator,
|
||||
[
|
||||
"number",
|
||||
gr.inputs.Radio(["Single", "Married", "Divorced"]),
|
||||
gr.inputs.Dataframe(
|
||||
headers=["Item", "Cost", "Deduct"],
|
||||
datatype=["str", "number", "bool"],
|
||||
label="Assets Purchased this Year"
|
||||
)
|
||||
],
|
||||
"number",
|
||||
interpretation="default"
|
||||
)
|
||||
|
||||
io.launch()
|
@ -1,3 +1,5 @@
|
||||
# Demo: (Dropdown, Checkbox, Slider, CheckboxGroup, Number, Radio) -> (Label)
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import sklearn
|
||||
@ -71,7 +73,7 @@ io = gr.Interface(
|
||||
"checkbox",
|
||||
gr.inputs.Slider(0, 80),
|
||||
gr.inputs.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"),
|
||||
gr.inputs.Slider(0, 150),
|
||||
gr.inputs.Number().interpret(delta_type="absolute", delta=5),
|
||||
gr.inputs.Radio(["S", "C", "Q"], type="index"),
|
||||
],
|
||||
"label",
|
||||
|
Loading…
x
Reference in New Issue
Block a user