updates demos

This commit is contained in:
Ali Abid 2020-10-22 05:07:43 -07:00
parent b74f95a443
commit 2405239b3e
11 changed files with 52 additions and 44 deletions

View File

@ -1,37 +0,0 @@
import gradio as gr
def fraud_detection(income, assets):
income *= 1000
total_asset_cost = sum(assets["Cost"])
total_deductible = sum(assets[assets["Deduct"]]["Cost"])
if total_asset_cost > income / 2:
fraud_prob = max(total_asset_cost / income, total_deductible / total_asset_cost)
else:
# Benford's law
expected_digit_distribution = {1: .301, 2: .176, 3: .125}
numbers = [income] + list(assets["Cost"])
digit_distribution = {i: 0 for i in range(10)}
for number in numbers:
leading_digit = str(int(number))[0]
digit_distribution[int(leading_digit)] += 1
fraud_prob = 0
for digit, expected in expected_digit_distribution.items():
fraud_prob += abs(digit_distribution[digit] / len(numbers) - expected) / 10
fraud_prob = min(1, fraud_prob)
return {"fraud": fraud_prob, "standard": 1 - fraud_prob}
io = gr.Interface(
fraud_detection,
[
gr.inputs.Slider(1, 500, label="Income (in thousands)"),
gr.inputs.Dataframe(
headers=["Item", "Cost", "Deduct"],
datatype=["str", "number", "bool"],
label="Assets Purchased this Year"
)
],
"label"
)
io.launch()

View File

@ -1,7 +1,7 @@
# Demo: (Image) -> (Label)
import gradio as gr
import tensorflow as tf
# from vis.utils import utils
# from vis.visualization import visualize_cam
import numpy as np
from PIL import Image

View File

@ -1 +0,0 @@
++++++++++++

View File

@ -1,8 +1,7 @@
# Demo: (Textbox) -> (Label)
import gradio as gr
gr.reset_all()
def longest_word(text):
words = text.split(" ")
lengths = [len(word) for word in words]

Binary file not shown.

After

Width:  |  Height:  |  Size: 655 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

View File

@ -1,3 +1,5 @@
# Demo: (Textbox) -> (Label)
import gradio as gr
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer

43
demo/tax_calculator.py Normal file
View File

@ -0,0 +1,43 @@
# Demo: (Number, Radio, Dataframe) -> (Textbox)
import gradio as gr
def tax_calculator(income, marital_status, assets):
tax_brackets = [
(10, 0),
(25, 8),
(60, 12),
(120, 20),
(250, 30)
]
total_deductible = sum(assets[assets["Deduct"]]["Cost"])
taxable_income = income - total_deductible
total_tax = 0
for bracket, rate in tax_brackets:
if taxable_income > bracket:
total_tax += (taxable_income - bracket) * rate / 100
if marital_status == "Married":
total_tax *= 0.75
elif marital_status == "Divorced":
total_tax *= 0.8
return round(total_tax)
io = gr.Interface(
tax_calculator,
[
"number",
gr.inputs.Radio(["Single", "Married", "Divorced"]),
gr.inputs.Dataframe(
headers=["Item", "Cost", "Deduct"],
datatype=["str", "number", "bool"],
label="Assets Purchased this Year"
)
],
"number",
interpretation="default"
)
io.launch()

View File

@ -1,3 +1,5 @@
# Demo: (Dropdown, Checkbox, Slider, CheckboxGroup, Number, Radio) -> (Label)
import pandas as pd
import numpy as np
import sklearn
@ -71,7 +73,7 @@ io = gr.Interface(
"checkbox",
gr.inputs.Slider(0, 80),
gr.inputs.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"),
gr.inputs.Slider(0, 150),
gr.inputs.Number().interpret(delta_type="absolute", delta=5),
gr.inputs.Radio(["S", "C", "Q"], type="index"),
],
"label",