diff --git a/Test Keras.ipynb b/Test Keras.ipynb index a8b4d8ddbe..cc665319ff 100644 --- a/Test Keras.ipynb +++ b/Test Keras.ipynb @@ -9,18 +9,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", @@ -32,9 +23,19 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From C:\\Users\\ALI\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n" + ] + } + ], "source": [ "model = tf.keras.applications.inception_v3.InceptionV3()" ] @@ -48,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -64,9 +65,7 @@ { "cell_type": "code", "execution_count": 14, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -74,7 +73,7 @@ "text": [ "Closing existing server...\n", "NOTE: Gradio is in beta stage, please report all bugs to: contact.gradio@gmail.com\n", - "Model is running locally at: http://localhost:7861/\n", + "Model is running locally at: http://localhost:7860/\n", "Unable to create public link for interface, please check internet connection or try restarting python interpreter.\n" ] }, @@ -85,14 +84,14 @@ " \n", " " ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -101,17 +100,35 @@ { "data": { "text/plain": [ - "''" + "(.HTTPServer at 0x25256cb1080>,\n", + " 'http://localhost:7860/',\n", + " None)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Error in connection handler\n", + "Traceback (most recent call last):\n", + " File \"C:\\Users\\ALI\\Anaconda3\\lib\\site-packages\\websockets\\server.py\", line 169, in handler\n", + " yield from self.ws_handler(self, path)\n", + " File \"C:\\Users\\ALI\\Desktop\\gradiome\\gradio\\interface.py\", line 139, in communicate\n", + " self.input_interface.rebuild_flagged(msg)\n", + " File \"C:\\Users\\ALI\\Desktop\\gradiome\\gradio\\inputs.py\", line 223, in rebuild_flagged\n", + " sniffer = csv.Sniffer().sniff(f.readline())\n", + " File \"C:\\Users\\ALI\\Anaconda3\\lib\\csv.py\", line 188, in sniff\n", + " raise Error(\"Could not determine delimiter\")\n", + "_csv.Error: Could not determine delimiter\n" + ] } ], "source": [ - "io.launch(inline=True, inbrowser=False, share=True, validate=False)\n", - ";" + "io.launch(inline=True, inbrowser=False, share=True, validate=False)" ] }, { diff --git a/gradio/inputs.py b/gradio/inputs.py index 7684468c0c..dde128463e 100644 --- a/gradio/inputs.py +++ b/gradio/inputs.py @@ -10,6 +10,7 @@ import numpy as np from PIL import Image, ImageOps import datetime import csv +import pandas as pd # Where to find the static resources associated with each template. BASE_INPUT_INTERFACE_TEMPLATE_PATH = 'templates/input/{}.html' @@ -211,9 +212,18 @@ class ImageUpload(AbstractInput): im = preprocessing_utils.encoding_to_image(inp) timestamp = datetime.datetime.now() im.save(f'gradio-flagged/{timestamp.strftime("%Y-%m-%d %H-%M-%S")}.png', 'PNG') + f = open('gradio-flagged/gradio-flagged.csv','a+') + header = ['Gradio flag output: Records filename (timestamp) and associated output, as well confidences and second top two outputs (if they exist)'] + columns = ['Filename (timestamp)','Label','Confidence','Label','Confidence','Label','Confidence'] fields = [timestamp.strftime("%Y-%m-%d %H-%M-%S"),msg['data']['output']] writer = csv.writer(f) + # df = pd.read_csv('gradio-flagged/gradio-flagged.csv') + # if df.empty: + # sniffer = csv.Sniffer().sniff(f.readline()) + # if sniffer.has_header(f.read(32)): + # writer.writerow(header) + # writer.writerow(columns) writer.writerow(fields) f.close()