gradio/test/components/test_plot.py

72 lines
1.9 KiB
Python
Raw Normal View History

import pytest
import gradio as gr
from gradio import utils
class TestPlot:
@pytest.mark.asyncio
async def test_in_interface_as_output(self):
"""
Interface, process
"""
def plot(num):
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot(range(num), range(num))
return fig
iface = gr.Interface(plot, "slider", "plot")
with utils.MatplotlibBackendMananger():
output = await iface.process_api(block_fn=0, inputs=[10], state={})
assert output["data"][0]["type"] == "matplotlib"
assert output["data"][0]["plot"].startswith("data:image/webp;base64")
def test_static(self):
"""
postprocess
"""
with utils.MatplotlibBackendMananger():
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3], [1, 2, 3])
component = gr.Plot(fig)
assert component.get_config().get("value") is not None
component = gr.Plot(None)
assert component.get_config().get("value") is None
def test_postprocess_altair(self):
import altair as alt
from vega_datasets import data
cars = data.cars()
chart = (
alt.Chart(cars)
.mark_point()
.encode(
x="Horsepower",
y="Miles_per_Gallon",
color="Origin",
)
)
out = gr.Plot().postprocess(chart).model_dump()
assert isinstance(out["plot"], str)
assert out["plot"] == chart.to_json()
def test_plot_format_parameter(self):
"""
postprocess
"""
with utils.MatplotlibBackendMananger():
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot([1, 2, 3], [1, 2, 3])
component = gr.Plot(format="jpeg")
assert component.postprocess(fig).plot.startswith("data:image/jpeg")