gradio/demo/image_classifier.py

48 lines
1.5 KiB
Python
Raw Normal View History

2020-09-17 07:43:37 +08:00
import gradio as gr
import tensorflow as tf
# from vis.utils import utils
# from vis.visualization import visualize_cam
import numpy as np
from PIL import Image
import requests
from urllib.request import urlretrieve
2020-09-21 22:54:34 +08:00
# # Download human-readable labels for ImageNet.
# response = requests.get("https://git.io/JJkYN")
# labels = response.text.split("\n")
labels = range(1000) # comment this later
2020-09-17 07:43:37 +08:00
mobile_net = tf.keras.applications.MobileNetV2()
def image_classifier(im):
arr = np.expand_dims(im, axis=0)
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
prediction = mobile_net.predict(arr).flatten()
return {labels[i]: float(prediction[i]) for i in range(1000)}
def image_explain(im):
2020-09-21 22:54:34 +08:00
model.layers[-1].activation = tf.keras.activations.linear
2020-09-17 07:43:37 +08:00
model = utils.apply_modifications(model)
penultimate_layer_idx = 2
class_idx = class_idxs_sorted[0]
seed_input = img
grad_top1 = visualize_cam(model, layer_idx, class_idx, seed_input,
penultimate_layer_idx = penultimate_layer_idx,#None,
backprop_modifier = None,
grad_modifier = None)
print(grad_top_1)
return grad_top1
2020-09-21 22:54:34 +08:00
image = gr.inputs.Image(shape=(224, 224))
2020-09-17 07:43:37 +08:00
label = gr.outputs.Label(num_top_classes=3)
2020-09-21 22:54:34 +08:00
gr.Interface(image_classifier, image, label,
2020-09-17 07:43:37 +08:00
capture_session=True,
2020-09-21 22:54:34 +08:00
interpretation="default",
2020-09-17 07:43:37 +08:00
examples=[
["images/cheetah1.jpg"],
["images/lion.jpg"]
]).launch();