gradio/examples/Emotional Detector (ImageUpload).ipynb

152 lines
4.7 KiB
Plaintext
Raw Normal View History

2019-02-18 09:47:15 +08:00
{
"cells": [
{
"cell_type": "code",
2019-02-18 10:36:04 +08:00
"execution_count": 1,
2019-02-18 09:47:15 +08:00
"metadata": {},
"outputs": [
{
2019-02-18 10:36:04 +08:00
"name": "stderr",
2019-02-18 09:47:15 +08:00
"output_type": "stream",
"text": [
2019-02-18 10:36:04 +08:00
"Using TensorFlow backend.\n"
2019-02-18 09:47:15 +08:00
]
}
],
"source": [
"import numpy as np\n",
"import sklearn\n",
"import gradio\n",
"from keras.models import load_model\n",
"\n",
"%load_ext autoreload\n",
"%autoreload 2"
]
},
2019-02-20 03:49:13 +08:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load an Facial Emotion Detector Model"
]
},
2019-02-18 09:47:15 +08:00
{
"cell_type": "code",
2019-03-07 04:11:58 +08:00
"execution_count": 2,
2019-02-20 03:49:13 +08:00
"metadata": {},
2019-03-07 04:11:58 +08:00
"outputs": [],
2019-02-18 09:47:15 +08:00
"source": [
"model = load_model('../.models/emotion.h5')"
2019-02-18 09:47:15 +08:00
]
},
{
"cell_type": "code",
2019-03-07 04:11:58 +08:00
"execution_count": 3,
2019-02-20 03:49:13 +08:00
"metadata": {},
"outputs": [],
"source": [
"def post_p(prediction): \n",
" emotional_dict = {0: \"Angry\", 1: \"Disgusted\", 2: \"Fearful\", 3: \"Happy\", 4: \"Neutral\", 5: \"Sad\", 6: \"Surprised\"}\n",
" return emotional_dict[prediction.squeeze().argmax()]"
]
},
{
"cell_type": "code",
2019-03-07 14:09:49 +08:00
"execution_count": 4,
2019-02-20 03:49:13 +08:00
"metadata": {},
2019-03-07 04:11:58 +08:00
"outputs": [
{
2019-03-07 14:09:49 +08:00
"name": "stdout",
"output_type": "stream",
"text": [
"NOTE: Gradio is in beta stage, please report all bugs to: a12d@stanford.edu\n",
"Model is running locally at: http://localhost:7860/interface.html\n",
"To create a public link, set `share=True` in the argument to `launch()`\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"1000\"\n",
" height=\"500\"\n",
" src=\"http://localhost:7860/interface.html\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x2725311ca20>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"('http://localhost:7860/interface.html', None)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"127.0.0.1 - - [06/Mar/2019 12:13:52] \"GET /interface.html HTTP/1.1\" 200 -\n",
"127.0.0.1 - - [06/Mar/2019 12:13:52] \"GET /static/css/gradio.css HTTP/1.1\" 200 -\n",
"127.0.0.1 - - [06/Mar/2019 12:13:52] \"GET /static/js/all-io.js HTTP/1.1\" 200 -\n",
"127.0.0.1 - - [06/Mar/2019 12:13:52] \"GET /static/js/image-upload-input.js HTTP/1.1\" 200 -\n",
"127.0.0.1 - - [06/Mar/2019 12:13:52] \"GET /static/js/class-output.js HTTP/1.1\" 200 -\n",
"Error in connection handler\n",
"Traceback (most recent call last):\n",
" File \"C:\\Users\\islam\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\websockets\\server.py\", line 169, in handler\n",
" yield from self.ws_handler(self, path)\n",
" File \"C:\\Users\\islam\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gradio\\interface.py\", line 106, in communicate\n",
" prediction = self.predict(processed_input)\n",
" File \"C:\\Users\\islam\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\gradio\\interface.py\", line 122, in predict\n",
" return self.model_obj.predict(preprocessed_input)\n",
" File \"C:\\Users\\islam\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\keras\\engine\\training.py\", line 1149, in predict\n",
" x, _, _ = self._standardize_user_data(x)\n",
" File \"C:\\Users\\islam\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\keras\\engine\\training.py\", line 751, in _standardize_user_data\n",
" exception_prefix='input')\n",
" File \"C:\\Users\\islam\\Anaconda3\\envs\\tensorflow\\lib\\site-packages\\keras\\engine\\training_utils.py\", line 138, in standardize_input_data\n",
" str(data_shape))\n",
"ValueError: Error when checking input: expected conv2d_1_input to have shape (48, 48, 1) but got array with shape (224, 224, 3)\n"
2019-03-07 04:11:58 +08:00
]
}
],
2019-02-18 09:47:15 +08:00
"source": [
2019-03-07 04:11:58 +08:00
"iface = gradio.Interface(inputs='imageupload', outputs='label', model=model, model_type='keras')\n",
"iface.launch(share=False)"
2019-02-18 09:47:15 +08:00
]
}
],
"metadata": {
"kernelspec": {
2019-03-07 04:11:58 +08:00
"display_name": "Python 3.6 (tensorflow)",
2019-02-18 09:47:15 +08:00
"language": "python",
2019-03-07 04:11:58 +08:00
"name": "tensorflow"
2019-02-18 09:47:15 +08:00
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2019-03-07 04:11:58 +08:00
"version": "3.6.7"
2019-02-18 09:47:15 +08:00
}
},
"nbformat": 4,
"nbformat_minor": 2
}