mirror of
https://github.com/gradio-app/gradio.git
synced 2024-12-09 02:00:44 +08:00
50 lines
1.9 KiB
Python
50 lines
1.9 KiB
Python
|
import time
|
||
|
import gradio as gr
|
||
|
|
||
|
|
||
|
def fake_diffusion(steps):
|
||
|
for i in range(steps):
|
||
|
print(f"Current step: {i}")
|
||
|
time.sleep(1)
|
||
|
yield str(i)
|
||
|
|
||
|
|
||
|
def long_prediction(*args, **kwargs):
|
||
|
time.sleep(10)
|
||
|
return 42
|
||
|
|
||
|
|
||
|
with gr.Blocks() as demo:
|
||
|
with gr.Row():
|
||
|
with gr.Column():
|
||
|
n = gr.Slider(1, 10, value=9, step=1, label="Number Steps")
|
||
|
run = gr.Button()
|
||
|
output = gr.Textbox(label="Iterative Output")
|
||
|
stop = gr.Button(value="Stop Iterating")
|
||
|
with gr.Column():
|
||
|
textbox = gr.Textbox(label="Prompt")
|
||
|
prediction = gr.Number(label="Expensive Calculation")
|
||
|
run_pred = gr.Button(value="Run Expensive Calculation")
|
||
|
with gr.Column():
|
||
|
cancel_on_change = gr.Textbox(label="Cancel Iteration and Expensive Calculation on Change")
|
||
|
cancel_on_submit = gr.Textbox(label="Cancel Iteration and Expensive Calculation on Submit")
|
||
|
echo = gr.Textbox(label="Echo")
|
||
|
with gr.Row():
|
||
|
with gr.Column():
|
||
|
image = gr.Image(source="webcam", tool="editor", label="Cancel on edit", interactive=True)
|
||
|
with gr.Column():
|
||
|
video = gr.Video(source="webcam", label="Cancel on play", interactive=True)
|
||
|
|
||
|
click_event = run.click(fake_diffusion, n, output)
|
||
|
stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
|
||
|
pred_event = run_pred.click(fn=long_prediction, inputs=[textbox], outputs=prediction)
|
||
|
|
||
|
cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])
|
||
|
cancel_on_submit.submit(lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event])
|
||
|
image.edit(None, None, None, cancels=[click_event, pred_event])
|
||
|
video.play(None, None, None, cancels=[click_event, pred_event])
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
demo.queue(concurrency_count=2, max_size=20).launch()
|