mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-24 10:54:04 +08:00
178 lines
5.0 KiB
Python
178 lines
5.0 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
|
||
|
# In[9]:
|
||
|
|
||
|
|
||
|
import tensorflow as tf
|
||
|
import sys
|
||
|
import gradio
|
||
|
from tensorflow.keras.layers import *
|
||
|
from tensorflow.keras.datasets import imdb
|
||
|
import json
|
||
|
from tensorflow.keras import backend as K
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
# In[2]:
|
||
|
|
||
|
|
||
|
top_words = 5000 # Only keep the 5,000 most frequent words
|
||
|
max_word_length = 500 # The maximum length of the review should be 500 words (trim/pad otherwise)
|
||
|
|
||
|
# (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words);
|
||
|
# # save np.load
|
||
|
np_load_old = np.load
|
||
|
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
|
||
|
|
||
|
# # # call load_data with allow_pickle implicitly set to true
|
||
|
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words);
|
||
|
|
||
|
# # restore np.load for future normal usage
|
||
|
np.load = np_load_old
|
||
|
|
||
|
X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_word_length)
|
||
|
X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_word_length)
|
||
|
|
||
|
|
||
|
def get_trained_model(n):
|
||
|
model = tf.keras.models.Sequential()
|
||
|
model.add(Embedding(top_words, 32, input_length=max_word_length))
|
||
|
model.add(Dropout(0.2))
|
||
|
model.add(Conv1D(250, 3, padding='valid', activation='relu', strides=1))
|
||
|
model.add(GlobalMaxPooling1D())
|
||
|
model.add(Dense(250))
|
||
|
model.add(Dropout(0.2))
|
||
|
model.add(Activation('relu'))
|
||
|
model.add(Dense(1))
|
||
|
model.add(Activation('sigmoid'))
|
||
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||
|
model.fit(X_train[:n], y_train[:n], epochs=1, batch_size=128)
|
||
|
print(model.evaluate(X_test[:n], y_test[:n]))
|
||
|
return model
|
||
|
|
||
|
|
||
|
# In[3]:
|
||
|
|
||
|
|
||
|
model = get_trained_model(n=1000) #25000
|
||
|
|
||
|
|
||
|
# In[4]:
|
||
|
|
||
|
|
||
|
graph = tf.get_default_graph()
|
||
|
sess = tf.keras.backend.get_session()
|
||
|
|
||
|
|
||
|
# In[5]:
|
||
|
|
||
|
|
||
|
NUM_SPECIAL_TOKENS = 3
|
||
|
PAD_TOKEN = 0
|
||
|
START_TOKEN = 1
|
||
|
UNK_TOKEN = 2
|
||
|
|
||
|
word_to_id = tf.keras.datasets.imdb.get_word_index()
|
||
|
word_to_id = {k: (v + NUM_SPECIAL_TOKENS) for k, v in word_to_id.items()}
|
||
|
|
||
|
id_to_word = {value: key for key, value in word_to_id.items()}
|
||
|
id_to_word[PAD_TOKEN] = "" # Padding tokens are converted to empty strings.
|
||
|
id_to_word[START_TOKEN] = "" # Start tokens are converted to empty strings.
|
||
|
id_to_word[UNK_TOKEN] = "UNK" # <UNK> tokens are converted to "UNK".
|
||
|
|
||
|
|
||
|
def decode_vector_to_text(vector):
|
||
|
text = " ".join(id_to_word[id] for id in vector if id >= 2)
|
||
|
return text
|
||
|
|
||
|
|
||
|
def encode_text_to_vector(text, max_word_length=500, top_words=5000):
|
||
|
text_vector = text.split(" ")
|
||
|
encoded_vector = [
|
||
|
word_to_id.get(element, UNK_TOKEN) if word_to_id.get(element, UNK_TOKEN) < top_words else UNK_TOKEN for element
|
||
|
in text_vector]
|
||
|
encoded_vector = [START_TOKEN] + encoded_vector
|
||
|
if len(encoded_vector) < max_word_length:
|
||
|
encoded_vector = (max_word_length - len(encoded_vector)) * [PAD_TOKEN] + encoded_vector
|
||
|
else:
|
||
|
encoded_vector = encoded_vector[:max_word_length]
|
||
|
return encoded_vector
|
||
|
|
||
|
|
||
|
def preprocessing(text):
|
||
|
new = encode_text_to_vector(text)
|
||
|
return tf.keras.preprocessing.sequence.pad_sequences([new], maxlen=max_word_length)
|
||
|
|
||
|
|
||
|
def postprocessing(pred):
|
||
|
return {
|
||
|
"Positive review": f"{pred[0][0]}",
|
||
|
"Negative review": f"{1-pred[0][0]}"
|
||
|
}
|
||
|
|
||
|
def predict(inp):
|
||
|
inp = preprocessing(inp)
|
||
|
with graph.as_default():
|
||
|
with sess.as_default():
|
||
|
prediction = model.predict(inp)
|
||
|
prediction = postprocessing(prediction)
|
||
|
return prediction
|
||
|
|
||
|
|
||
|
def saliency(input, output):
|
||
|
with graph.as_default():
|
||
|
with sess.as_default():
|
||
|
processed_input = preprocessing(input)
|
||
|
processed_output = output
|
||
|
|
||
|
output = 0 if float(output["Positive review"]) > 0.5 else 1
|
||
|
input_tensors = [model.layers[0].input, K.learning_phase()]
|
||
|
saliency_input = model.layers[1].input
|
||
|
saliency_output = model.layers[-1].output[:, output]
|
||
|
gradients = model.optimizer.get_gradients(saliency_output, saliency_input)
|
||
|
compute_gradients = K.function(inputs=input_tensors, outputs=gradients)
|
||
|
saliency_graph = compute_gradients(processed_input.reshape(1, 500))[0]
|
||
|
|
||
|
saliency_graph = saliency_graph.reshape(500, 32)
|
||
|
|
||
|
saliency_graph = np.abs(saliency_graph).sum(axis=1)
|
||
|
normalized_saliency = (saliency_graph - saliency_graph.min()) / (saliency_graph.max() - saliency_graph.min())
|
||
|
|
||
|
start_idx = np.where(processed_input[0] == START_TOKEN)[0][0]
|
||
|
heat_map = []
|
||
|
counter = 0
|
||
|
words = input.split(" ")
|
||
|
for i in range(start_idx + 1, 500):
|
||
|
heat_map.extend([normalized_saliency[i]] * len(words[counter]))
|
||
|
heat_map.append(0) # zero saliency value assigned to the spaces between words
|
||
|
counter += 1
|
||
|
return np.array(heat_map)
|
||
|
|
||
|
|
||
|
# In[6]:
|
||
|
|
||
|
|
||
|
textbox = gradio.inputs.Textbox()
|
||
|
label = gradio.outputs.Label()
|
||
|
interface = gradio.Interface(inputs=textbox, outputs=label, fn=predict, saliency=saliency)
|
||
|
|
||
|
|
||
|
# In[8]:
|
||
|
|
||
|
|
||
|
interface.launch(inbrowser=True, share=False)
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
|
||
|
|