gradio/test/components/test_audio.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

194 lines
6.7 KiB
Python
Raw Normal View History

import filecmp
from copy import deepcopy
from difflib import SequenceMatcher
from pathlib import Path
import numpy as np
import pytest
from gradio_client import media_data
from gradio_client import utils as client_utils
from scipy.io import wavfile
import gradio as gr
from gradio import processing_utils, utils
from gradio.data_classes import FileData
class TestAudio:
@pytest.mark.asyncio
async def test_component_functions(self, gradio_temp_dir):
"""
Preprocess, postprocess serialize, get_config, deserialize
type: filepath, numpy, file
"""
x_wav = FileData(path=media_data.BASE64_AUDIO["path"])
audio_input = gr.Audio()
output1 = audio_input.preprocess(x_wav)
assert isinstance(output1, tuple)
assert output1[0] == 8000
assert output1[1].shape == (8046,)
x_wav = await processing_utils.async_move_files_to_cache([x_wav], audio_input)
x_wav = x_wav[0]
audio_input = gr.Audio(type="filepath")
output1 = audio_input.preprocess(x_wav)
assert isinstance(output1, str)
assert Path(output1).name.endswith("audio_sample.wav")
audio_input = gr.Audio(label="Upload Your Audio")
assert audio_input.get_config() == {
"autoplay": False,
"sources": ["upload", "microphone"],
"name": "audio",
"show_download_button": None,
"show_share_button": False,
"streaming": False,
"show_label": True,
"label": "Upload Your Audio",
"container": True,
"editable": True,
"min_width": 160,
"scale": None,
"elem_id": None,
"elem_classes": [],
"visible": True,
"value": None,
"interactive": None,
"proxy_url": None,
"type": "numpy",
"format": "wav",
"streamable": False,
"max_length": None,
"min_length": None,
"waveform_options": {
"sample_rate": 44100,
"show_controls": False,
"show_recording_waveform": True,
"skip_length": 5,
"waveform_color": None,
"waveform_progress_color": None,
"trim_region_color": None,
},
"_selectable": False,
"key": None,
"loop": False,
}
assert audio_input.preprocess(None) is None
audio_input = gr.Audio(type="filepath")
assert isinstance(audio_input.preprocess(x_wav), str)
with pytest.raises(ValueError):
gr.Audio(type="unknown") # type: ignore
rng = np.random.default_rng()
# Confirm Audio can be instantiated with a numpy array
gr.Audio((100, rng.random(size=(1000, 2))), label="Play your audio")
# Output functionalities
y_audio = client_utils.decode_base64_to_file(
deepcopy(media_data.BASE64_AUDIO)["data"]
)
audio_output = gr.Audio(type="filepath")
assert filecmp.cmp(
y_audio.name,
audio_output.postprocess(y_audio.name).model_dump()["path"], # type: ignore
)
assert audio_output.get_config() == {
"autoplay": False,
"name": "audio",
"show_download_button": None,
"show_share_button": False,
"streaming": False,
"show_label": True,
"label": None,
"max_length": None,
"min_length": None,
"container": True,
"editable": True,
"min_width": 160,
"scale": None,
"elem_id": None,
"elem_classes": [],
"visible": True,
"value": None,
"interactive": None,
"proxy_url": None,
"type": "filepath",
"format": "wav",
"streamable": False,
"sources": ["upload", "microphone"],
"waveform_options": {
"sample_rate": 44100,
"show_controls": False,
"show_recording_waveform": True,
"skip_length": 5,
"waveform_color": None,
"waveform_progress_color": None,
"trim_region_color": None,
},
"_selectable": False,
"key": None,
"loop": False,
}
output1 = audio_output.postprocess(y_audio.name).model_dump() # type: ignore
output2 = audio_output.postprocess(Path(y_audio.name)).model_dump() # type: ignore
assert output1 == output2
def test_default_value_postprocess(self):
x_wav = deepcopy(media_data.BASE64_AUDIO)
audio = gr.Audio(value=x_wav["path"])
assert utils.is_in_or_equal(audio.value["path"], audio.GRADIO_CACHE)
def test_in_interface(self):
def reverse_audio(audio):
sr, data = audio
return (sr, np.flipud(data))
iface = gr.Interface(reverse_audio, "audio", "audio")
reversed_file = iface("test/test_files/audio_sample.wav")
reversed_reversed_file = iface(reversed_file)
reversed_reversed_data = client_utils.encode_url_or_file_to_base64(
reversed_reversed_file
)
similarity = SequenceMatcher(
a=reversed_reversed_data, b=media_data.BASE64_AUDIO["data"]
).ratio()
assert similarity > 0.99
def test_in_interface_as_output(self):
"""
Interface, process
"""
def generate_noise(duration):
return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16)
iface = gr.Interface(generate_noise, "slider", "audio")
assert iface(100).endswith(".wav")
def test_audio_preprocess_can_be_read_by_scipy(self, gradio_temp_dir):
x_wav = FileData(
path=processing_utils.save_base64_to_cache(
media_data.BASE64_MICROPHONE["data"], cache_dir=gradio_temp_dir
)
)
audio_input = gr.Audio(type="filepath")
output = audio_input.preprocess(x_wav)
wavfile.read(output)
def test_prepost_process_to_mp3(self, gradio_temp_dir):
x_wav = FileData(
path=processing_utils.save_base64_to_cache(
media_data.BASE64_MICROPHONE["data"], cache_dir=gradio_temp_dir
)
)
audio_input = gr.Audio(type="filepath", format="mp3")
output = audio_input.preprocess(x_wav)
assert isinstance(output, str)
assert output.endswith("mp3")
output = audio_input.postprocess(
(48000, np.random.randint(-256, 256, (5, 3)).astype(np.int16))
).model_dump() # type: ignore
assert output["path"].endswith("mp3")