mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
23 lines
732 B
Python
23 lines
732 B
Python
|
import gradio as gr
|
||
|
import torch
|
||
|
import requests
|
||
|
from torchvision import transforms
|
||
|
|
||
|
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
||
|
response = requests.get("https://git.io/JJkYN")
|
||
|
labels = response.text.split("\n")
|
||
|
|
||
|
def predict(inp):
|
||
|
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
||
|
with torch.no_grad():
|
||
|
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
||
|
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
||
|
return confidences
|
||
|
|
||
|
demo = gr.Interface(fn=predict,
|
||
|
inputs=gr.inputs.Image(type="pil"),
|
||
|
outputs=gr.outputs.Label(num_top_classes=3),
|
||
|
examples=[["cheetah.jpg"]],
|
||
|
)
|
||
|
|
||
|
demo.launch()
|