gradio/test/test_interface.py

70 lines
2.6 KiB
Python
Raw Normal View History

2019-02-28 13:51:51 +08:00
import unittest
2019-03-08 05:53:34 +08:00
import numpy as np
2020-06-10 08:00:30 +08:00
import gradio as gr
2019-02-28 13:51:51 +08:00
import gradio.inputs
import gradio.outputs
class TestInterface(unittest.TestCase):
def test_input_output_mapping(self):
2020-06-12 03:31:44 +08:00
io = gr.Interface(inputs='SketCHPad', outputs='textBOX', fn=lambda
x: x)
self.assertIsInstance(io.input_interfaces[0], gradio.inputs.Sketchpad)
self.assertIsInstance(io.output_interfaces[0], gradio.outputs.Textbox)
2019-02-28 13:51:51 +08:00
def test_input_interface_is_instance(self):
2020-06-12 03:31:44 +08:00
inp = gradio.inputs.ImageIn()
io = gr.Interface(inputs=inp, outputs='textBOX', fn=lambda x: x)
self.assertEqual(io.input_interfaces[0], inp)
def test_output_interface_is_instance(self):
2020-06-12 03:31:44 +08:00
# out = gradio.outputs.Label(show_confidences=False)
out = gradio.outputs.Label()
io = gr.Interface(inputs='SketCHPad', outputs=out, fn=lambda x: x)
self.assertEqual(io.output_interfaces[0], out)
2019-06-19 04:13:50 +08:00
def test_keras_model(self):
try:
import tensorflow as tf
except:
raise unittest.SkipTest("Need tensorflow installed to do keras-based tests")
inputs = tf.keras.Input(shape=(3,))
x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs)
outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
2020-06-12 03:31:44 +08:00
io = gr.Interface(inputs='SketCHPad', outputs='textBOX', fn=model)
# pred = io.predict(np.ones(shape=(1, 3), ))
# self.assertEqual(pred.shape, (1, 5))
2019-03-08 05:53:34 +08:00
2019-06-19 04:13:50 +08:00
def test_func_model(self):
def model(x):
return 2*x
2020-06-12 03:31:44 +08:00
io = gr.Interface(inputs='SketCHPad', outputs='textBOX', fn=model)
# pred = io.predict(np.ones(shape=(1, 3)))
# self.assertEqual(pred.shape, (1, 3))
2019-03-08 05:53:34 +08:00
def test_pytorch_model(self):
try:
import torch
except:
raise unittest.SkipTest("Need torch installed to do pytorch-based tests")
class TwoLayerNet(torch.nn.Module):
def __init__(self):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(3, 4)
self.linear2 = torch.nn.Linear(4, 5)
def forward(self, x):
h_relu = torch.nn.functional.relu(self.linear1(x))
y_pred = self.linear2(h_relu)
return y_pred
model = TwoLayerNet()
2020-06-12 03:31:44 +08:00
io = gr.Interface(inputs='SketCHPad', outputs='textBOX', fn=model)
# pred = io.predict(np.ones(shape=(1, 3), dtype=np.float32))
# self.assertEqual(pred.shape, (1, 5))
2019-03-08 05:53:34 +08:00
2019-02-28 13:51:51 +08:00
if __name__ == '__main__':
2019-06-19 04:13:50 +08:00
unittest.main()