gradio/demo/titanic_survival/run.py

117 lines
3.0 KiB
Python
Raw Normal View History

import os
2020-10-14 23:25:58 +08:00
import numpy as np
import pandas as pd
2020-10-14 23:25:58 +08:00
import sklearn
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import gradio as gr
2020-10-14 23:25:58 +08:00
2020-11-11 22:15:53 +08:00
current_dir = os.path.dirname(os.path.realpath(__file__))
data = pd.read_csv(os.path.join(current_dir, "files/titanic.csv"))
2020-10-14 23:25:58 +08:00
def encode_age(df):
df.Age = df.Age.fillna(-0.5)
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
categories = pd.cut(df.Age, bins, labels=False)
df.Age = categories
return df
2020-10-14 23:25:58 +08:00
def encode_fare(df):
df.Fare = df.Fare.fillna(-0.5)
bins = (-1, 0, 8, 15, 31, 1000)
categories = pd.cut(df.Fare, bins, labels=False)
df.Fare = categories
return df
2020-10-14 23:25:58 +08:00
def encode_df(df):
df = encode_age(df)
df = encode_fare(df)
sex_mapping = {"male": 0, "female": 1}
df = df.replace({"Sex": sex_mapping})
2020-10-14 23:25:58 +08:00
embark_mapping = {"S": 1, "C": 2, "Q": 3}
df = df.replace({"Embarked": embark_mapping})
2020-10-14 23:25:58 +08:00
df.Embarked = df.Embarked.fillna(0)
df["Company"] = 0
df.loc[(df["SibSp"] > 0), "Company"] = 1
df.loc[(df["Parch"] > 0), "Company"] = 2
df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3
df = df[
[
"PassengerId",
"Pclass",
"Sex",
"Age",
"Fare",
"Embarked",
"Company",
"Survived",
]
]
2020-10-14 23:25:58 +08:00
return df
2020-10-14 23:25:58 +08:00
train = encode_df(data)
X_all = train.drop(["Survived", "PassengerId"], axis=1)
y_all = train["Survived"]
2020-10-14 23:25:58 +08:00
num_test = 0.20
X_train, X_test, y_train, y_test = train_test_split(
X_all, y_all, test_size=num_test, random_state=23
)
2020-10-14 23:25:58 +08:00
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
2020-10-14 23:25:58 +08:00
def predict_survival(passenger_class, is_male, age, company, fare, embark_point):
df = pd.DataFrame.from_dict(
{
"Pclass": [passenger_class + 1],
"Sex": [0 if is_male else 1],
"Age": [age],
"Company": [
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
],
"Fare": [fare],
"Embarked": [embark_point + 1],
}
)
2020-10-14 23:25:58 +08:00
df = encode_age(df)
df = encode_fare(df)
pred = clf.predict_proba(df)[0]
return {"Perishes": pred[0], "Survives": pred[1]}
2020-10-14 23:25:58 +08:00
2020-11-11 22:15:53 +08:00
iface = gr.Interface(
2020-10-14 23:25:58 +08:00
predict_survival,
[
gr.inputs.Dropdown(["first", "second", "third"], type="index"),
"checkbox",
gr.inputs.Slider(0, 80),
gr.inputs.CheckboxGroup(
["Sibling", "Child"], label="Travelling with (select all)"
),
2021-09-17 07:16:49 +08:00
gr.inputs.Number(),
2020-10-14 23:25:58 +08:00
gr.inputs.Radio(["S", "C", "Q"], type="index"),
],
"label",
examples=[
["first", True, 30, [], 50, "S"],
["second", False, 40, ["Sibling", "Child"], 10, "Q"],
["third", True, 30, ["Child"], 20, "S"],
],
2021-05-24 14:53:30 +08:00
interpretation="default",
2020-10-14 23:25:58 +08:00
)
2020-11-11 22:15:53 +08:00
if __name__ == "__main__":
iface.launch()