gradio/demo/fake_diffusion_with_gif/run.py

49 lines
1.3 KiB
Python
Raw Normal View History

import gradio as gr
import numpy as np
import time
import os
from PIL import Image
import requests
from io import BytesIO
def create_gif(images):
pil_images = []
for image in images:
if isinstance(image, str):
response = requests.get(image)
image = Image.open(BytesIO(response.content))
else:
image = Image.fromarray((image * 255).astype(np.uint8))
pil_images.append(image)
fp_out = os.path.join(os.path.dirname(__file__), "image.gif")
img = pil_images.pop(0)
img.save(fp=fp_out, format='GIF', append_images=pil_images,
save_all=True, duration=400, loop=0)
return fp_out
def fake_diffusion(steps):
images = []
for _ in range(steps):
time.sleep(1)
image = np.random.random((600, 600, 3))
images.append(image)
yield image, gr.Image.update(visible=False)
time.sleep(1)
image = "https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg"
images.append(image)
gif_path = create_gif(images)
yield image, gr.Image.update(value=gif_path, visible=True)
demo = gr.Interface(fake_diffusion,
inputs=gr.Slider(1, 10, 3),
outputs=["image", gr.Image(label="All Images", visible=False)])
demo.queue()
if __name__ == "__main__":
demo.launch()