2019-07-26 04:34:39 +08:00
|
|
|
import tensorflow as tf
|
|
|
|
import sys
|
|
|
|
sys.path.insert(1, '../gradio')
|
|
|
|
import gradio
|
|
|
|
from tensorflow.keras.layers import *
|
2019-07-26 05:14:32 +08:00
|
|
|
|
2019-07-26 04:34:39 +08:00
|
|
|
|
|
|
|
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
|
|
|
x_train, x_test = x_train.reshape(-1,784) / 255.0, x_test.reshape(-1,784) / 255.0
|
|
|
|
|
|
|
|
|
2019-07-26 05:14:32 +08:00
|
|
|
def get_trained_model(n):
|
|
|
|
model = tf.keras.models.Sequential()
|
|
|
|
model.add(Reshape((28, 28, 1), input_shape=(784,)))
|
|
|
|
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
|
|
|
|
model.add(Conv2D(64, (3, 3), activation='relu'))
|
|
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
|
|
model.add(Dropout(0.25))
|
|
|
|
model.add(Flatten())
|
|
|
|
model.add(Dense(128, activation='relu'))
|
|
|
|
model.add(Dropout(0.5))
|
|
|
|
model.add(Dense(10, activation='softmax'))
|
|
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
2019-07-26 17:23:01 +08:00
|
|
|
model.fit(x_train[:n], y_train[:n], epochs=2)
|
|
|
|
print(model.evaluate(x_test, y_test))
|
2019-07-26 05:14:32 +08:00
|
|
|
return model
|
2019-07-26 04:34:39 +08:00
|
|
|
|
|
|
|
|
2019-07-26 17:23:01 +08:00
|
|
|
model = get_trained_model(n=50000)
|
2019-07-26 04:34:39 +08:00
|
|
|
|
2019-07-26 05:14:32 +08:00
|
|
|
# Gradio code #
|
|
|
|
sketchpad = gradio.inputs.Sketchpad(flatten=True, sample_inputs=x_test[:10])
|
2019-07-26 17:23:01 +08:00
|
|
|
label = gradio.outputs.Label(show_confidences=False)
|
|
|
|
io = gradio.Interface(inputs=sketchpad, outputs=label, model=model, model_type="keras", verbose=False,
|
2019-07-26 14:53:17 +08:00
|
|
|
always_flag=True)
|
2019-07-26 05:14:32 +08:00
|
|
|
httpd, path_to_local_server, share_url = io.launch(inline=True, share=True, inbrowser=True)
|
2019-07-26 04:34:39 +08:00
|
|
|
|
2019-07-26 05:14:32 +08:00
|
|
|
print("URL for MNIST model interface: ", share_url)
|