gradio/examples/mnist_interactive.py

39 lines
1.4 KiB
Python
Raw Normal View History

2019-07-26 04:34:39 +08:00
import tensorflow as tf
import sys
sys.path.insert(1, '../gradio')
import gradio
from tensorflow.keras.layers import *
2019-07-26 05:14:32 +08:00
2019-07-26 04:34:39 +08:00
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train.reshape(-1,784) / 255.0, x_test.reshape(-1,784) / 255.0
2019-07-26 05:14:32 +08:00
def get_trained_model(n):
model = tf.keras.models.Sequential()
model.add(Reshape((28, 28, 1), input_shape=(784,)))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train[:n], y_train[:n], epochs=2)
print(model.evaluate(x_test, y_test))
2019-07-26 05:14:32 +08:00
return model
2019-07-26 04:34:39 +08:00
model = get_trained_model(n=50000)
2019-07-26 04:34:39 +08:00
2019-07-26 05:14:32 +08:00
# Gradio code #
sketchpad = gradio.inputs.Sketchpad(flatten=True, sample_inputs=x_test[:10])
label = gradio.outputs.Label(show_confidences=False)
io = gradio.Interface(inputs=sketchpad, outputs=label, model=model, model_type="keras", verbose=False,
2019-07-26 14:53:17 +08:00
always_flag=True)
2019-07-26 05:14:32 +08:00
httpd, path_to_local_server, share_url = io.launch(inline=True, share=True, inbrowser=True)
2019-07-26 04:34:39 +08:00
2019-07-26 05:14:32 +08:00
print("URL for MNIST model interface: ", share_url)