2022-01-21 21:44:12 +08:00
|
|
|
from math import sqrt
|
|
|
|
|
2022-04-19 03:26:30 +08:00
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('Agg')
|
2021-05-24 23:31:44 +08:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
2022-04-19 03:26:30 +08:00
|
|
|
import plotly.express as px
|
|
|
|
import pandas as pd
|
|
|
|
import bokeh.plotting as bk
|
|
|
|
from bokeh.models import ColumnDataSource
|
|
|
|
from bokeh.embed import json_item
|
2022-01-21 21:44:12 +08:00
|
|
|
|
|
|
|
import gradio as gr
|
|
|
|
|
2021-05-24 23:31:44 +08:00
|
|
|
|
2022-04-19 03:26:30 +08:00
|
|
|
def outbreak(plot_type, r, month, countries, social_distancing):
|
2021-05-24 23:31:44 +08:00
|
|
|
months = ["January", "February", "March", "April", "May"]
|
|
|
|
m = months.index(month)
|
|
|
|
start_day = 30 * m
|
|
|
|
final_day = 30 * (m + 1)
|
2022-01-21 21:44:12 +08:00
|
|
|
x = np.arange(start_day, final_day + 1)
|
2021-05-24 23:31:44 +08:00
|
|
|
pop_count = {"USA": 350, "Canada": 40, "Mexico": 300, "UK": 120}
|
|
|
|
if social_distancing:
|
|
|
|
r = sqrt(r)
|
2022-04-19 03:26:30 +08:00
|
|
|
df = pd.DataFrame({'day': x})
|
|
|
|
for country in countries:
|
|
|
|
df[country] = ( x ** (r) * (pop_count[country] + 1))
|
|
|
|
|
|
|
|
|
|
|
|
if plot_type == "Matplotlib":
|
|
|
|
fig = plt.figure()
|
2022-04-21 03:14:46 +08:00
|
|
|
plt.plot(df['day'], df[countries].to_numpy())
|
2022-04-19 03:26:30 +08:00
|
|
|
plt.title("Outbreak in " + month)
|
|
|
|
plt.ylabel("Cases")
|
|
|
|
plt.xlabel("Days since Day 0")
|
|
|
|
plt.legend(countries)
|
|
|
|
return fig
|
|
|
|
elif plot_type == "Plotly":
|
|
|
|
fig = px.line(df, x='day', y=countries)
|
|
|
|
fig.update_layout(title="Outbreak in " + month,
|
|
|
|
xaxis_title="Cases",
|
|
|
|
yaxis_title="Days Since Day 0")
|
|
|
|
return fig
|
|
|
|
else:
|
|
|
|
source = ColumnDataSource(df)
|
|
|
|
p = bk.figure(title="Outbreak in " + month, x_axis_label="Cases", y_axis_label="Days Since Day 0")
|
|
|
|
for country in countries:
|
|
|
|
p.line(x='day', y=country, line_width=2, source=source)
|
|
|
|
item_text = json_item(p, "plotDiv")
|
|
|
|
return item_text
|
|
|
|
|
|
|
|
inputs = [
|
|
|
|
gr.Dropdown(["Matplotlib", "Plotly", "Bokeh"], label="Plot Type"),
|
2022-05-16 14:55:35 +08:00
|
|
|
gr.Slider(1, 4, 3.2, label="R"),
|
2022-04-05 06:47:51 +08:00
|
|
|
gr.Dropdown(["January", "February", "March", "April", "May"], label="Month"),
|
2022-04-21 05:57:45 +08:00
|
|
|
gr.CheckboxGroup(["USA", "Canada", "Mexico", "UK"], label="Countries",
|
2022-05-11 08:11:43 +08:00
|
|
|
value=["USA", "Canada"]),
|
2022-03-29 06:13:39 +08:00
|
|
|
gr.Checkbox(label="Social Distancing?"),
|
2022-04-19 03:26:30 +08:00
|
|
|
]
|
2022-05-14 13:45:44 +08:00
|
|
|
outputs = gr.Plot()
|
2022-04-19 03:26:30 +08:00
|
|
|
|
|
|
|
demo = gr.Interface(fn=outbreak, inputs=inputs, outputs=outputs)
|
|
|
|
|
|
|
|
|
2021-05-24 23:31:44 +08:00
|
|
|
if __name__ == "__main__":
|
2022-03-29 06:13:39 +08:00
|
|
|
demo.launch()
|