2020-06-10 08:59:21 +08:00
|
|
|
import tensorflow as tf
|
|
|
|
import gradio
|
2020-06-11 02:34:53 +08:00
|
|
|
import os
|
2020-06-10 08:59:21 +08:00
|
|
|
from tensorflow.keras.layers import *
|
|
|
|
import gradio as gr
|
|
|
|
|
|
|
|
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
|
|
|
x_train, x_test = x_train.reshape(-1,784) / 255.0, x_test.reshape(-1,784) / 255.0
|
|
|
|
|
|
|
|
def get_trained_model(n):
|
|
|
|
model = tf.keras.models.Sequential()
|
|
|
|
model.add(Reshape((28, 28, 1), input_shape=(784,)))
|
|
|
|
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
|
|
|
|
model.add(Conv2D(64, (3, 3), activation='relu'))
|
|
|
|
model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
|
|
model.add(Dropout(0.25))
|
|
|
|
model.add(Flatten())
|
|
|
|
model.add(Dense(128, activation='relu'))
|
|
|
|
model.add(Dropout(0.5))
|
|
|
|
model.add(Dense(10, activation='softmax'))
|
|
|
|
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
|
|
|
model.fit(x_train[:n], y_train[:n], epochs=2)
|
|
|
|
print(model.evaluate(x_test, y_test))
|
|
|
|
return model
|
|
|
|
|
2020-06-11 02:34:53 +08:00
|
|
|
if not os.path.exists("models/mnist.h5"):
|
|
|
|
model = get_trained_model(n=50000)
|
|
|
|
model.save('models/mnist.h5')
|
|
|
|
else:
|
|
|
|
model = tf.keras.models.load_model('models/mnist.h5')
|
|
|
|
|
|
|
|
graph = tf.get_default_graph()
|
|
|
|
sess = tf.keras.backend.get_session()
|
2020-06-10 08:59:21 +08:00
|
|
|
|
|
|
|
def recognize_digit(image):
|
2020-06-11 02:34:53 +08:00
|
|
|
with graph.as_default():
|
|
|
|
with sess.as_default():
|
|
|
|
prediction = model.predict(image).tolist()[0]
|
|
|
|
return {str(i): prediction[i] for i in range(10)}
|
2020-06-10 08:59:21 +08:00
|
|
|
|
2020-06-11 02:34:53 +08:00
|
|
|
gr.Interface(
|
|
|
|
recognize_digit,
|
|
|
|
gradio.inputs.Sketchpad(flatten=True),
|
|
|
|
gradio.outputs.Label(num_top_classes=3),
|
|
|
|
live=True
|
|
|
|
).launch()
|