gradio/demo/digit_classifier.py

46 lines
1.5 KiB
Python
Raw Normal View History

2020-06-10 08:59:21 +08:00
import tensorflow as tf
import gradio
2020-06-11 02:34:53 +08:00
import os
2020-06-10 08:59:21 +08:00
from tensorflow.keras.layers import *
import gradio as gr
(x_train, y_train),(x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train, x_test = x_train.reshape(-1,784) / 255.0, x_test.reshape(-1,784) / 255.0
def get_trained_model(n):
model = tf.keras.models.Sequential()
model.add(Reshape((28, 28, 1), input_shape=(784,)))
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train[:n], y_train[:n], epochs=2)
print(model.evaluate(x_test, y_test))
return model
2020-06-11 02:34:53 +08:00
if not os.path.exists("models/mnist.h5"):
model = get_trained_model(n=50000)
model.save('models/mnist.h5')
else:
model = tf.keras.models.load_model('models/mnist.h5')
graph = tf.get_default_graph()
sess = tf.keras.backend.get_session()
2020-06-10 08:59:21 +08:00
def recognize_digit(image):
2020-06-11 02:34:53 +08:00
with graph.as_default():
with sess.as_default():
prediction = model.predict(image).tolist()[0]
return {str(i): prediction[i] for i in range(10)}
2020-06-10 08:59:21 +08:00
2020-06-11 02:34:53 +08:00
gr.Interface(
recognize_digit,
gradio.inputs.Sketchpad(flatten=True),
gradio.outputs.Label(num_top_classes=3),
live=True
).launch()