mirror of
https://github.com/gradio-app/gradio.git
synced 2025-01-06 10:25:17 +08:00
34 lines
1.2 KiB
Python
34 lines
1.2 KiB
Python
|
import gradio as gr
|
||
|
from gradio import ChatMessage
|
||
|
from transformers import load_tool, ReactCodeAgent, HfEngine
|
||
|
from utils import stream_from_transformers_agent
|
||
|
|
||
|
# Import tool from Hub
|
||
|
image_generation_tool = load_tool("m-ric/text-to-image")
|
||
|
|
||
|
|
||
|
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
|
||
|
# Initialize the agent with both tools
|
||
|
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
|
||
|
|
||
|
|
||
|
def interact_with_agent(prompt, messages):
|
||
|
messages.append(ChatMessage(role="user", content=prompt))
|
||
|
yield messages
|
||
|
for msg in stream_from_transformers_agent(agent, prompt):
|
||
|
messages.append(msg)
|
||
|
yield messages
|
||
|
yield messages
|
||
|
|
||
|
|
||
|
with gr.Blocks() as demo:
|
||
|
stored_message = gr.State([])
|
||
|
chatbot = gr.Chatbot(label="Agent",
|
||
|
type="messages",
|
||
|
avatar_images=(None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png"))
|
||
|
text_input = gr.Textbox(lines=1, label="Chat Message")
|
||
|
text_input.submit(lambda s: (s, ""), [text_input], [stored_message, text_input]).then(interact_with_agent, [stored_message, chatbot], [chatbot])
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
demo.launch()
|