2020-08-22 05:20:05 +08:00
|
|
|
# Demo: (Textbox) -> (HighlightedText, KeyValues, HTML)
|
|
|
|
|
2020-08-20 05:27:22 +08:00
|
|
|
import spacy
|
|
|
|
from spacy import displacy
|
|
|
|
import gradio as gr
|
|
|
|
|
|
|
|
nlp = spacy.load("en_core_web_sm")
|
|
|
|
|
|
|
|
def text_analysis(text):
|
|
|
|
doc = nlp(text)
|
|
|
|
html = displacy.render(doc, style="dep", page=True)
|
|
|
|
html = "<div style='max-width:100%; max-height:360px; overflow:auto'>" + html + "</div>"
|
|
|
|
pos_count = {
|
|
|
|
"char_count": len(text),
|
|
|
|
"token_count": 0,
|
|
|
|
}
|
|
|
|
pos_tokens = []
|
|
|
|
|
|
|
|
for token in doc:
|
|
|
|
pos_count["token_count"] += 1
|
|
|
|
pos_count[token.pos_] = pos_count.get(token.pos_, 0) + 1
|
|
|
|
pos_tokens.extend([(token.text, token.pos_), (" ", None)])
|
|
|
|
|
|
|
|
return pos_tokens, pos_count, html
|
|
|
|
|
|
|
|
gr.Interface(
|
|
|
|
text_analysis,
|
|
|
|
gr.inputs.Textbox(placeholder="Enter sentence here..."),
|
|
|
|
[
|
|
|
|
"highlight", "key_values", "html"
|
|
|
|
]
|
|
|
|
).launch()
|