gradio/guides/image_classification_in_tensorflow.md

90 lines
5.3 KiB
Markdown
Raw Normal View History

2022-03-01 03:43:51 +08:00
# Image Classification in TensorFlow and Keras
Live website changes (#1578) * fix audio output cache (#804) * fix audio output cache * changes * version update Co-authored-by: Ali Abid <aliabid94@gmail.com> * Website Tracker Slackbot (#797) * added commands to reload script * catch errors with git pull * read new webhook from os variable * correcting bash * bash fixes * formatting * more robust error checking * only sends success if git changes * catching error from script * escaping error text to send with curl * correct text escaping for error message * fix search bug in guides (#809) * Update getting_started.md (#808) * Fix type of server returned by `Launchable` (#810) * `Launchable` returns a FastAPI now * Update .gitignore * Add a missing line to getting started (#816) Former-commit-id: 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 96f203108bf1222fe333a0175687293abdc669d7] Former-commit-id: eaff13262853078e0c6c0baa54c731d9e56bc73f * Add a missing line to getting started (#816) Former-commit-id: 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 96f203108bf1222fe333a0175687293abdc669d7]] Former-commit-id: eaff13262853078e0c6c0baa54c731d9e56bc73f Former-commit-id: b5112c3f425c0ea961461854efae9c28a73aea01 * Add a missing line to getting started (#816) Former-commit-id: 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 96f203108bf1222fe333a0175687293abdc669d7]]] Former-commit-id: eaff13262853078e0c6c0baa54c731d9e56bc73f Former-commit-id: b5112c3f425c0ea961461854efae9c28a73aea01 Former-commit-id: bce6f9c4c5254301eb73e76eb47cddab3e132c24 * Add a missing line to getting started (#816) Former-commit-id: 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 81e271ca22e838e1ee618d48cdb0e904fd233cf3 [formerly 96f203108bf1222fe333a0175687293abdc669d7]]]] Former-commit-id: eaff13262853078e0c6c0baa54c731d9e56bc73f Former-commit-id: b5112c3f425c0ea961461854efae9c28a73aea01 Former-commit-id: bce6f9c4c5254301eb73e76eb47cddab3e132c24 Former-commit-id: feba0888e3d488b82a3518343f607517d0836f13 * Add a missing line to getting started (#816) * Clean-History - Remove 51MB file with this commit Former-commit-id: 34b6a2325d613eeef622410f2d1ff3d869d3133c * Clean-History - Remove 51MB file with this commit Former-commit-id: 34b6a2325d613eeef622410f2d1ff3d869d3133c Former-commit-id: dd700c33cca3f560621219530444b631b7767392 * Clean-History - Remove 51MB file with this commit Former-commit-id: 34b6a2325d613eeef622410f2d1ff3d869d3133c Former-commit-id: dd700c33cca3f560621219530444b631b7767392 Former-commit-id: 0d80e6a056abad1c4d1fd6f162eb725e0db5fb4f * Clean-History - Remove 51MB file with this commit Former-commit-id: 34b6a2325d613eeef622410f2d1ff3d869d3133c Former-commit-id: dd700c33cca3f560621219530444b631b7767392 Former-commit-id: 0d80e6a056abad1c4d1fd6f162eb725e0db5fb4f Former-commit-id: 20523b05194438209cf64cb688008b4599eb847e * changes * changes * Homepage: header image size (#1347) * image size * image in local assets * add dall-e mini banner * undo ui changes * changes * changes * updates * updates * changes * changes * changes * h11 dependency * add npm build-mac * expand demo button to all classes * add demos to docstrings * add anchor tags to headers * add required tag to param table * add consistent styling for headers * skip param beginning with underscore from docs * skip kwargs param from docs * remove types in param docstring * override signature to reflect usage * add supported events * add step-by-step guides * fix guide contribution link * add related spaces * fix img styling on guides * pin quickstart, advanced, and block guides to top * margin fix * autogenerated copy buttons for all codeblocks * changes * documentaiton * format * launch * formatting * style changes * remove backticks * changes * changes Co-authored-by: Ali Abid <aliabid94@gmail.com> Co-authored-by: Ali Abdalla <ali.si3luwa@gmail.com> Co-authored-by: Julien Chaumond <julien@huggingface.co> Co-authored-by: Ömer Faruk Özdemir <farukozderim@gmail.com> Co-authored-by: Ali <ali.abid@huggingface.co> Co-authored-by: Victor Muštar <victor.mustar@gmail.com> Co-authored-by: Abubakar Abid <abubakar@huggingface.co>
2022-07-07 07:22:10 +08:00
Related spaces: https://huggingface.co/spaces/abidlabs/keras-image-classifier
Tags: VISION, MOBILENET, TENSORFLOW
Docs: image, label, examples
2022-03-01 03:43:51 +08:00
## Introduction
Image classification is a central task in computer vision. Building better classifiers to classify what object is present in a picture is an active area of research, as it has applications stretching from traffic control systems to satellite imaging.
Such models are perfect to use with Gradio's *image* input component, so in this tutorial we will build a web demo to classify images using Gradio. We will be able to build the whole web application in Python, and it will look like this (try one of the examples!):
2022-03-01 03:43:51 +08:00
2022-03-25 03:52:19 +08:00
<iframe src="https://hf.space/embed/abidlabs/keras-image-classifier/+" frameBorder="0" height="660" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
2022-03-01 03:43:51 +08:00
Let's get started!
### Prerequisites
Make sure you have the `gradio` Python package already [installed](/getting_started). We will be using a pretrained Keras image classification model, so you should also have `tensorflow` installed.
## Step 1 — Setting up the Image Classification Model
First, we will need an image classification model. For this tutorial, we will use a pretrained Mobile Net model, as it is easily downloadable from [Keras](https://keras.io/api/applications/mobilenet/). You can use a different pretrained model or train your own.
2022-03-01 03:43:51 +08:00
```python
import tensorflow as tf
inception_net = tf.keras.applications.MobileNetV2()
```
This line automatically downloads the MobileNet model and weights using the Keras library.
## Step 2 — Defining a `predict` function
Next, we will need to define a function that takes in the *user input*, which in this case is an image, and returns the prediction. The prediction should be returned as a dictionary whose keys are class name and values are confidence probabilities. We will load the class names from this [text file](https://git.io/JJkYN).
2022-03-01 03:43:51 +08:00
In the case of our pretrained model, it will look like this:
```python
import requests
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def classify_image(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
prediction = inception_net.predict(inp).flatten()
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
return confidences
```
Let's break this down. The function takes one parameter:
2022-03-01 03:43:51 +08:00
* `inp`: the input image as a `numpy` array
Then, the function adds a batch dimension, passes it through the model, and returns:
* `confidences`: the predictions, as a dictionary whose keys are class labels and whose values are confidence probabilities
## Step 3 — Creating a Gradio Interface
Now that we have our predictive function set up, we can create a Gradio Interface around it.
In this case, the input component is a drag-and-drop image component. To create this input, we can use the `"gradio.inputs.Image"` class, which creates the component and handles the preprocessing to convert that to a numpy array. We will instantiate the class with a parameter that automatically preprocesses the input image to be 224 pixels by 224 pixels, which is the size that MobileNet expects.
The output component will be a `"label"`, which displays the top labels in a nice form. Since we don't want to show all 1,000 class labels, we will customize it to show only the top 3 images.
Finally, we'll add one more parameter, the `examples`, which allows us to prepopulate our interfaces with a few predefined examples. The code for Gradio looks like this:
```python
import gradio as gr
2022-03-01 03:55:51 +08:00
gr.Interface(fn=classify_image,
2022-03-01 03:43:51 +08:00
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Label(num_top_classes=3),
examples=["banana.jpg", "car.jpg"]).launch()
```
This produces the following interface, which you can try right here in your browser (try uploading your own examples!):
2022-03-25 03:52:19 +08:00
<iframe src="https://hf.space/embed/abidlabs/keras-image-classifier/+" frameBorder="0" height="660" title="Gradio app" class="container p-0 flex-grow space-iframe" allow="accelerometer; ambient-light-sensor; autoplay; battery; camera; document-domain; encrypted-media; fullscreen; geolocation; gyroscope; layout-animations; legacy-image-formats; magnetometer; microphone; midi; oversized-images; payment; picture-in-picture; publickey-credentials-get; sync-xhr; usb; vr ; wake-lock; xr-spatial-tracking" sandbox="allow-forms allow-modals allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-downloads"></iframe>
2022-03-01 03:43:51 +08:00
----------
And you're done! That's all the code you need to build a web demo for an image classifier. If you'd like to share with others, try setting `share=True` when you `launch()` the Interface!