2020-10-22 20:07:43 +08:00
|
|
|
# Demo: (Image) -> (Label)
|
|
|
|
|
2020-09-17 07:43:37 +08:00
|
|
|
import gradio as gr
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from PIL import Image
|
|
|
|
import requests
|
|
|
|
from urllib.request import urlretrieve
|
2020-11-03 10:21:31 +08:00
|
|
|
import json
|
2020-11-11 22:15:53 +08:00
|
|
|
import os
|
2020-09-17 07:43:37 +08:00
|
|
|
|
2020-11-03 10:21:31 +08:00
|
|
|
# Load human-readable labels for ImageNet.
|
2020-11-11 22:15:53 +08:00
|
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
with open(os.path.join(current_dir, "files/imagenet_labels.json")) as labels_file:
|
2020-11-03 10:21:31 +08:00
|
|
|
labels = json.load(labels_file)
|
2020-09-17 07:43:37 +08:00
|
|
|
|
|
|
|
mobile_net = tf.keras.applications.MobileNetV2()
|
|
|
|
|
|
|
|
|
|
|
|
def image_classifier(im):
|
|
|
|
arr = np.expand_dims(im, axis=0)
|
|
|
|
arr = tf.keras.applications.mobilenet.preprocess_input(arr)
|
|
|
|
prediction = mobile_net.predict(arr).flatten()
|
|
|
|
return {labels[i]: float(prediction[i]) for i in range(1000)}
|
|
|
|
|
|
|
|
|
2020-09-21 22:54:34 +08:00
|
|
|
image = gr.inputs.Image(shape=(224, 224))
|
2020-09-17 07:43:37 +08:00
|
|
|
label = gr.outputs.Label(num_top_classes=3)
|
|
|
|
|
2020-11-11 22:15:53 +08:00
|
|
|
iface = gr.Interface(image_classifier, image, label,
|
2020-09-17 07:43:37 +08:00
|
|
|
capture_session=True,
|
2020-09-21 22:54:34 +08:00
|
|
|
interpretation="default",
|
2020-09-17 07:43:37 +08:00
|
|
|
examples=[
|
|
|
|
["images/cheetah1.jpg"],
|
|
|
|
["images/lion.jpg"]
|
2020-09-23 02:16:46 +08:00
|
|
|
])
|
|
|
|
|
2020-11-11 22:15:53 +08:00
|
|
|
if __name__ == "__main__":
|
|
|
|
iface.launch()
|