2024-05-07 15:06:34 +08:00
|
|
|
import filecmp
|
|
|
|
from copy import deepcopy
|
|
|
|
from difflib import SequenceMatcher
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
from gradio_client import media_data
|
|
|
|
from gradio_client import utils as client_utils
|
|
|
|
from scipy.io import wavfile
|
|
|
|
|
|
|
|
import gradio as gr
|
|
|
|
from gradio import processing_utils, utils
|
|
|
|
from gradio.data_classes import FileData
|
|
|
|
|
|
|
|
|
|
|
|
class TestAudio:
|
|
|
|
@pytest.mark.asyncio
|
|
|
|
async def test_component_functions(self, gradio_temp_dir):
|
|
|
|
"""
|
|
|
|
Preprocess, postprocess serialize, get_config, deserialize
|
|
|
|
type: filepath, numpy, file
|
|
|
|
"""
|
|
|
|
x_wav = FileData(path=media_data.BASE64_AUDIO["path"])
|
|
|
|
audio_input = gr.Audio()
|
|
|
|
output1 = audio_input.preprocess(x_wav)
|
|
|
|
assert output1[0] == 8000
|
|
|
|
assert output1[1].shape == (8046,)
|
|
|
|
|
|
|
|
x_wav = await processing_utils.async_move_files_to_cache([x_wav], audio_input)
|
|
|
|
x_wav = x_wav[0]
|
|
|
|
audio_input = gr.Audio(type="filepath")
|
|
|
|
output1 = audio_input.preprocess(x_wav)
|
|
|
|
assert Path(output1).name.endswith("audio_sample.wav")
|
|
|
|
|
|
|
|
audio_input = gr.Audio(label="Upload Your Audio")
|
|
|
|
assert audio_input.get_config() == {
|
|
|
|
"autoplay": False,
|
|
|
|
"sources": ["upload", "microphone"],
|
|
|
|
"name": "audio",
|
|
|
|
"show_download_button": None,
|
|
|
|
"show_share_button": False,
|
|
|
|
"streaming": False,
|
|
|
|
"show_label": True,
|
|
|
|
"label": "Upload Your Audio",
|
|
|
|
"container": True,
|
|
|
|
"editable": True,
|
|
|
|
"min_width": 160,
|
|
|
|
"scale": None,
|
|
|
|
"elem_id": None,
|
|
|
|
"elem_classes": [],
|
|
|
|
"visible": True,
|
|
|
|
"value": None,
|
|
|
|
"interactive": None,
|
|
|
|
"proxy_url": None,
|
|
|
|
"type": "numpy",
|
|
|
|
"format": "wav",
|
|
|
|
"streamable": False,
|
|
|
|
"max_length": None,
|
|
|
|
"min_length": None,
|
|
|
|
"waveform_options": {
|
|
|
|
"sample_rate": 44100,
|
|
|
|
"show_controls": False,
|
|
|
|
"show_recording_waveform": True,
|
|
|
|
"skip_length": 5,
|
|
|
|
"waveform_color": None,
|
|
|
|
"waveform_progress_color": None,
|
|
|
|
"trim_region_color": None,
|
|
|
|
},
|
|
|
|
"_selectable": False,
|
|
|
|
"key": None,
|
2024-07-17 13:05:59 +08:00
|
|
|
"loop": False,
|
2024-05-07 15:06:34 +08:00
|
|
|
}
|
|
|
|
assert audio_input.preprocess(None) is None
|
|
|
|
|
|
|
|
audio_input = gr.Audio(type="filepath")
|
|
|
|
assert isinstance(audio_input.preprocess(x_wav), str)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
gr.Audio(type="unknown")
|
|
|
|
|
|
|
|
rng = np.random.default_rng()
|
|
|
|
# Confirm Audio can be instantiated with a numpy array
|
|
|
|
gr.Audio((100, rng.random(size=(1000, 2))), label="Play your audio")
|
|
|
|
|
|
|
|
# Output functionalities
|
|
|
|
y_audio = client_utils.decode_base64_to_file(
|
|
|
|
deepcopy(media_data.BASE64_AUDIO)["data"]
|
|
|
|
)
|
|
|
|
audio_output = gr.Audio(type="filepath")
|
|
|
|
assert filecmp.cmp(
|
|
|
|
y_audio.name, audio_output.postprocess(y_audio.name).model_dump()["path"]
|
|
|
|
)
|
|
|
|
assert audio_output.get_config() == {
|
|
|
|
"autoplay": False,
|
|
|
|
"name": "audio",
|
|
|
|
"show_download_button": None,
|
|
|
|
"show_share_button": False,
|
|
|
|
"streaming": False,
|
|
|
|
"show_label": True,
|
|
|
|
"label": None,
|
|
|
|
"max_length": None,
|
|
|
|
"min_length": None,
|
|
|
|
"container": True,
|
|
|
|
"editable": True,
|
|
|
|
"min_width": 160,
|
|
|
|
"scale": None,
|
|
|
|
"elem_id": None,
|
|
|
|
"elem_classes": [],
|
|
|
|
"visible": True,
|
|
|
|
"value": None,
|
|
|
|
"interactive": None,
|
|
|
|
"proxy_url": None,
|
|
|
|
"type": "filepath",
|
|
|
|
"format": "wav",
|
|
|
|
"streamable": False,
|
|
|
|
"sources": ["upload", "microphone"],
|
|
|
|
"waveform_options": {
|
|
|
|
"sample_rate": 44100,
|
|
|
|
"show_controls": False,
|
|
|
|
"show_recording_waveform": True,
|
|
|
|
"skip_length": 5,
|
|
|
|
"waveform_color": None,
|
|
|
|
"waveform_progress_color": None,
|
|
|
|
"trim_region_color": None,
|
|
|
|
},
|
|
|
|
"_selectable": False,
|
|
|
|
"key": None,
|
2024-07-17 13:05:59 +08:00
|
|
|
"loop": False,
|
2024-05-07 15:06:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
output1 = audio_output.postprocess(y_audio.name).model_dump()
|
|
|
|
output2 = audio_output.postprocess(Path(y_audio.name)).model_dump()
|
|
|
|
assert output1 == output2
|
|
|
|
|
|
|
|
def test_default_value_postprocess(self):
|
|
|
|
x_wav = deepcopy(media_data.BASE64_AUDIO)
|
|
|
|
audio = gr.Audio(value=x_wav["path"])
|
|
|
|
assert utils.is_in_or_equal(audio.value["path"], audio.GRADIO_CACHE)
|
|
|
|
|
|
|
|
def test_in_interface(self):
|
|
|
|
def reverse_audio(audio):
|
|
|
|
sr, data = audio
|
|
|
|
return (sr, np.flipud(data))
|
|
|
|
|
|
|
|
iface = gr.Interface(reverse_audio, "audio", "audio")
|
|
|
|
reversed_file = iface("test/test_files/audio_sample.wav")
|
|
|
|
reversed_reversed_file = iface(reversed_file)
|
|
|
|
reversed_reversed_data = client_utils.encode_url_or_file_to_base64(
|
|
|
|
reversed_reversed_file
|
|
|
|
)
|
|
|
|
similarity = SequenceMatcher(
|
|
|
|
a=reversed_reversed_data, b=media_data.BASE64_AUDIO["data"]
|
|
|
|
).ratio()
|
|
|
|
assert similarity > 0.99
|
|
|
|
|
|
|
|
def test_in_interface_as_output(self):
|
|
|
|
"""
|
|
|
|
Interface, process
|
|
|
|
"""
|
|
|
|
|
|
|
|
def generate_noise(duration):
|
|
|
|
return 48000, np.random.randint(-256, 256, (duration, 3)).astype(np.int16)
|
|
|
|
|
|
|
|
iface = gr.Interface(generate_noise, "slider", "audio")
|
|
|
|
assert iface(100).endswith(".wav")
|
|
|
|
|
|
|
|
def test_audio_preprocess_can_be_read_by_scipy(self, gradio_temp_dir):
|
|
|
|
x_wav = FileData(
|
|
|
|
path=processing_utils.save_base64_to_cache(
|
|
|
|
media_data.BASE64_MICROPHONE["data"], cache_dir=gradio_temp_dir
|
|
|
|
)
|
|
|
|
)
|
|
|
|
audio_input = gr.Audio(type="filepath")
|
|
|
|
output = audio_input.preprocess(x_wav)
|
|
|
|
wavfile.read(output)
|
|
|
|
|
|
|
|
def test_prepost_process_to_mp3(self, gradio_temp_dir):
|
|
|
|
x_wav = FileData(
|
|
|
|
path=processing_utils.save_base64_to_cache(
|
|
|
|
media_data.BASE64_MICROPHONE["data"], cache_dir=gradio_temp_dir
|
|
|
|
)
|
|
|
|
)
|
|
|
|
audio_input = gr.Audio(type="filepath", format="mp3")
|
|
|
|
output = audio_input.preprocess(x_wav)
|
|
|
|
assert output.endswith("mp3")
|
|
|
|
output = audio_input.postprocess(
|
|
|
|
(48000, np.random.randint(-256, 256, (5, 3)).astype(np.int16))
|
|
|
|
).model_dump()
|
|
|
|
assert output["path"].endswith("mp3")
|