godot/thirdparty/astcenc/astcenc_vecmathlib_avx2_8.h
K. S. Ernest (iFire) Lee 696346f4cc
Add ASTC compression and decompression with Arm astcenc.
Co-authored-by: Gordon A Macpherson <gordon.a.macpherson@gmail.com>
Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
2023-01-19 16:27:59 +01:00

1205 lines
29 KiB
C++

// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2019-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
/**
* @brief 8x32-bit vectors, implemented using AVX2.
*
* This module implements 8-wide 32-bit float, int, and mask vectors for x86
* AVX2.
*
* There is a baseline level of functionality provided by all vector widths and
* implementations. This is implemented using identical function signatures,
* modulo data type, so we can use them as substitutable implementations in VLA
* code.
*/
#ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
#define ASTC_VECMATHLIB_AVX2_8_H_INCLUDED
#ifndef ASTCENC_SIMD_INLINE
#error "Include astcenc_vecmathlib.h, do not include directly"
#endif
#include <cstdio>
// Define convenience intrinsics that are missing on older compilers
#define astcenc_mm256_set_m128i(m, n) _mm256_insertf128_si256(_mm256_castsi128_si256((n)), (m), 1)
// ============================================================================
// vfloat8 data type
// ============================================================================
/**
* @brief Data type for 8-wide floats.
*/
struct vfloat8
{
/**
* @brief Construct from zero-initialized value.
*/
ASTCENC_SIMD_INLINE vfloat8() = default;
/**
* @brief Construct from 4 values loaded from an unaligned address.
*
* Consider using loada() which is better with vectors if data is aligned
* to vector length.
*/
ASTCENC_SIMD_INLINE explicit vfloat8(const float *p)
{
m = _mm256_loadu_ps(p);
}
/**
* @brief Construct from 1 scalar value replicated across all lanes.
*
* Consider using zero() for constexpr zeros.
*/
ASTCENC_SIMD_INLINE explicit vfloat8(float a)
{
m = _mm256_set1_ps(a);
}
/**
* @brief Construct from 8 scalar values.
*
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vfloat8(
float a, float b, float c, float d,
float e, float f, float g, float h)
{
m = _mm256_set_ps(h, g, f, e, d, c, b, a);
}
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vfloat8(__m256 a)
{
m = a;
}
/**
* @brief Get the scalar value of a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE float lane() const
{
#if !defined(__clang__) && defined(_MSC_VER)
return m.m256_f32[l];
#else
union { __m256 m; float f[8]; } cvt;
cvt.m = m;
return cvt.f[l];
#endif
}
/**
* @brief Factory that returns a vector of zeros.
*/
static ASTCENC_SIMD_INLINE vfloat8 zero()
{
return vfloat8(_mm256_setzero_ps());
}
/**
* @brief Factory that returns a replicated scalar loaded from memory.
*/
static ASTCENC_SIMD_INLINE vfloat8 load1(const float* p)
{
return vfloat8(_mm256_broadcast_ss(p));
}
/**
* @brief Factory that returns a vector loaded from 32B aligned memory.
*/
static ASTCENC_SIMD_INLINE vfloat8 loada(const float* p)
{
return vfloat8(_mm256_load_ps(p));
}
/**
* @brief Factory that returns a vector containing the lane IDs.
*/
static ASTCENC_SIMD_INLINE vfloat8 lane_id()
{
return vfloat8(_mm256_set_ps(7, 6, 5, 4, 3, 2, 1, 0));
}
/**
* @brief The vector ...
*/
__m256 m;
};
// ============================================================================
// vint8 data type
// ============================================================================
/**
* @brief Data type for 8-wide ints.
*/
struct vint8
{
/**
* @brief Construct from zero-initialized value.
*/
ASTCENC_SIMD_INLINE vint8() = default;
/**
* @brief Construct from 8 values loaded from an unaligned address.
*
* Consider using loada() which is better with vectors if data is aligned
* to vector length.
*/
ASTCENC_SIMD_INLINE explicit vint8(const int *p)
{
m = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(p));
}
/**
* @brief Construct from 8 uint8_t loaded from an unaligned address.
*/
ASTCENC_SIMD_INLINE explicit vint8(const uint8_t *p)
{
// _mm_loadu_si64 would be nicer syntax, but missing on older GCC
m = _mm256_cvtepu8_epi32(_mm_cvtsi64_si128(*reinterpret_cast<const long long*>(p)));
}
/**
* @brief Construct from 1 scalar value replicated across all lanes.
*
* Consider using vfloat4::zero() for constexpr zeros.
*/
ASTCENC_SIMD_INLINE explicit vint8(int a)
{
m = _mm256_set1_epi32(a);
}
/**
* @brief Construct from 8 scalar values.
*
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vint8(
int a, int b, int c, int d,
int e, int f, int g, int h)
{
m = _mm256_set_epi32(h, g, f, e, d, c, b, a);
}
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vint8(__m256i a)
{
m = a;
}
/**
* @brief Get the scalar from a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE int lane() const
{
#if !defined(__clang__) && defined(_MSC_VER)
return m.m256i_i32[l];
#else
union { __m256i m; int f[8]; } cvt;
cvt.m = m;
return cvt.f[l];
#endif
}
/**
* @brief Factory that returns a vector of zeros.
*/
static ASTCENC_SIMD_INLINE vint8 zero()
{
return vint8(_mm256_setzero_si256());
}
/**
* @brief Factory that returns a replicated scalar loaded from memory.
*/
static ASTCENC_SIMD_INLINE vint8 load1(const int* p)
{
__m128i a = _mm_set1_epi32(*p);
return vint8(_mm256_broadcastd_epi32(a));
}
/**
* @brief Factory that returns a vector loaded from 32B aligned memory.
*/
static ASTCENC_SIMD_INLINE vint8 loada(const int* p)
{
return vint8(_mm256_load_si256(reinterpret_cast<const __m256i*>(p)));
}
/**
* @brief Factory that returns a vector containing the lane IDs.
*/
static ASTCENC_SIMD_INLINE vint8 lane_id()
{
return vint8(_mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0));
}
/**
* @brief The vector ...
*/
__m256i m;
};
// ============================================================================
// vmask8 data type
// ============================================================================
/**
* @brief Data type for 8-wide control plane masks.
*/
struct vmask8
{
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vmask8(__m256 a)
{
m = a;
}
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vmask8(__m256i a)
{
m = _mm256_castsi256_ps(a);
}
/**
* @brief Construct from 1 scalar value.
*/
ASTCENC_SIMD_INLINE explicit vmask8(bool a)
{
vint8 mask(a == false ? 0 : -1);
m = _mm256_castsi256_ps(mask.m);
}
/**
* @brief The vector ...
*/
__m256 m;
};
// ============================================================================
// vmask8 operators and functions
// ============================================================================
/**
* @brief Overload: mask union (or).
*/
ASTCENC_SIMD_INLINE vmask8 operator|(vmask8 a, vmask8 b)
{
return vmask8(_mm256_or_ps(a.m, b.m));
}
/**
* @brief Overload: mask intersect (and).
*/
ASTCENC_SIMD_INLINE vmask8 operator&(vmask8 a, vmask8 b)
{
return vmask8(_mm256_and_ps(a.m, b.m));
}
/**
* @brief Overload: mask difference (xor).
*/
ASTCENC_SIMD_INLINE vmask8 operator^(vmask8 a, vmask8 b)
{
return vmask8(_mm256_xor_ps(a.m, b.m));
}
/**
* @brief Overload: mask invert (not).
*/
ASTCENC_SIMD_INLINE vmask8 operator~(vmask8 a)
{
return vmask8(_mm256_xor_si256(_mm256_castps_si256(a.m), _mm256_set1_epi32(-1)));
}
/**
* @brief Return a 8-bit mask code indicating mask status.
*
* bit0 = lane 0
*/
ASTCENC_SIMD_INLINE unsigned int mask(vmask8 a)
{
return static_cast<unsigned int>(_mm256_movemask_ps(a.m));
}
/**
* @brief True if any lanes are enabled, false otherwise.
*/
ASTCENC_SIMD_INLINE bool any(vmask8 a)
{
return mask(a) != 0;
}
/**
* @brief True if all lanes are enabled, false otherwise.
*/
ASTCENC_SIMD_INLINE bool all(vmask8 a)
{
return mask(a) == 0xFF;
}
// ============================================================================
// vint8 operators and functions
// ============================================================================
/**
* @brief Overload: vector by vector addition.
*/
ASTCENC_SIMD_INLINE vint8 operator+(vint8 a, vint8 b)
{
return vint8(_mm256_add_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector incremental addition.
*/
ASTCENC_SIMD_INLINE vint8& operator+=(vint8& a, const vint8& b)
{
a = a + b;
return a;
}
/**
* @brief Overload: vector by vector subtraction.
*/
ASTCENC_SIMD_INLINE vint8 operator-(vint8 a, vint8 b)
{
return vint8(_mm256_sub_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector multiplication.
*/
ASTCENC_SIMD_INLINE vint8 operator*(vint8 a, vint8 b)
{
return vint8(_mm256_mullo_epi32(a.m, b.m));
}
/**
* @brief Overload: vector bit invert.
*/
ASTCENC_SIMD_INLINE vint8 operator~(vint8 a)
{
return vint8(_mm256_xor_si256(a.m, _mm256_set1_epi32(-1)));
}
/**
* @brief Overload: vector by vector bitwise or.
*/
ASTCENC_SIMD_INLINE vint8 operator|(vint8 a, vint8 b)
{
return vint8(_mm256_or_si256(a.m, b.m));
}
/**
* @brief Overload: vector by vector bitwise and.
*/
ASTCENC_SIMD_INLINE vint8 operator&(vint8 a, vint8 b)
{
return vint8(_mm256_and_si256(a.m, b.m));
}
/**
* @brief Overload: vector by vector bitwise xor.
*/
ASTCENC_SIMD_INLINE vint8 operator^(vint8 a, vint8 b)
{
return vint8(_mm256_xor_si256(a.m, b.m));
}
/**
* @brief Overload: vector by vector equality.
*/
ASTCENC_SIMD_INLINE vmask8 operator==(vint8 a, vint8 b)
{
return vmask8(_mm256_cmpeq_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector inequality.
*/
ASTCENC_SIMD_INLINE vmask8 operator!=(vint8 a, vint8 b)
{
return ~vmask8(_mm256_cmpeq_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector less than.
*/
ASTCENC_SIMD_INLINE vmask8 operator<(vint8 a, vint8 b)
{
return vmask8(_mm256_cmpgt_epi32(b.m, a.m));
}
/**
* @brief Overload: vector by vector greater than.
*/
ASTCENC_SIMD_INLINE vmask8 operator>(vint8 a, vint8 b)
{
return vmask8(_mm256_cmpgt_epi32(a.m, b.m));
}
/**
* @brief Logical shift left.
*/
template <int s> ASTCENC_SIMD_INLINE vint8 lsl(vint8 a)
{
return vint8(_mm256_slli_epi32(a.m, s));
}
/**
* @brief Arithmetic shift right.
*/
template <int s> ASTCENC_SIMD_INLINE vint8 asr(vint8 a)
{
return vint8(_mm256_srai_epi32(a.m, s));
}
/**
* @brief Logical shift right.
*/
template <int s> ASTCENC_SIMD_INLINE vint8 lsr(vint8 a)
{
return vint8(_mm256_srli_epi32(a.m, s));
}
/**
* @brief Return the min vector of two vectors.
*/
ASTCENC_SIMD_INLINE vint8 min(vint8 a, vint8 b)
{
return vint8(_mm256_min_epi32(a.m, b.m));
}
/**
* @brief Return the max vector of two vectors.
*/
ASTCENC_SIMD_INLINE vint8 max(vint8 a, vint8 b)
{
return vint8(_mm256_max_epi32(a.m, b.m));
}
/**
* @brief Return the horizontal minimum of a vector.
*/
ASTCENC_SIMD_INLINE vint8 hmin(vint8 a)
{
__m128i m = _mm_min_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
m = _mm_min_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
__m256i r = astcenc_mm256_set_m128i(m, m);
vint8 vmin(r);
return vmin;
}
/**
* @brief Return the horizontal maximum of a vector.
*/
ASTCENC_SIMD_INLINE vint8 hmax(vint8 a)
{
__m128i m = _mm_max_epi32(_mm256_extracti128_si256(a.m, 0), _mm256_extracti128_si256(a.m, 1));
m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,3,2)));
m = _mm_max_epi32(m, _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,1)));
m = _mm_shuffle_epi32(m, _MM_SHUFFLE(0,0,0,0));
__m256i r = astcenc_mm256_set_m128i(m, m);
vint8 vmax(r);
return vmax;
}
/**
* @brief Store a vector to a 16B aligned memory address.
*/
ASTCENC_SIMD_INLINE void storea(vint8 a, int* p)
{
_mm256_store_si256(reinterpret_cast<__m256i*>(p), a.m);
}
/**
* @brief Store a vector to an unaligned memory address.
*/
ASTCENC_SIMD_INLINE void store(vint8 a, int* p)
{
_mm256_storeu_si256(reinterpret_cast<__m256i*>(p), a.m);
}
/**
* @brief Store lowest N (vector width) bytes into an unaligned address.
*/
ASTCENC_SIMD_INLINE void store_nbytes(vint8 a, uint8_t* p)
{
// This is the most logical implementation, but the convenience intrinsic
// is missing on older compilers (supported in g++ 9 and clang++ 9).
// _mm_storeu_si64(ptr, _mm256_extracti128_si256(v.m, 0))
_mm_storel_epi64(reinterpret_cast<__m128i*>(p), _mm256_extracti128_si256(a.m, 0));
}
/**
* @brief Gather N (vector width) indices from the array.
*/
ASTCENC_SIMD_INLINE vint8 gatheri(const int* base, vint8 indices)
{
return vint8(_mm256_i32gather_epi32(base, indices.m, 4));
}
/**
* @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
*/
ASTCENC_SIMD_INLINE vint8 pack_low_bytes(vint8 v)
{
__m256i shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 28, 24, 20, 16,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 12, 8, 4, 0);
__m256i a = _mm256_shuffle_epi8(v.m, shuf);
__m128i a0 = _mm256_extracti128_si256(a, 0);
__m128i a1 = _mm256_extracti128_si256(a, 1);
__m128i b = _mm_unpacklo_epi32(a0, a1);
__m256i r = astcenc_mm256_set_m128i(b, b);
return vint8(r);
}
/**
* @brief Return lanes from @c b if @c cond is set, else @c a.
*/
ASTCENC_SIMD_INLINE vint8 select(vint8 a, vint8 b, vmask8 cond)
{
__m256i condi = _mm256_castps_si256(cond.m);
return vint8(_mm256_blendv_epi8(a.m, b.m, condi));
}
// ============================================================================
// vfloat4 operators and functions
// ============================================================================
/**
* @brief Overload: vector by vector addition.
*/
ASTCENC_SIMD_INLINE vfloat8 operator+(vfloat8 a, vfloat8 b)
{
return vfloat8(_mm256_add_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector incremental addition.
*/
ASTCENC_SIMD_INLINE vfloat8& operator+=(vfloat8& a, const vfloat8& b)
{
a = a + b;
return a;
}
/**
* @brief Overload: vector by vector subtraction.
*/
ASTCENC_SIMD_INLINE vfloat8 operator-(vfloat8 a, vfloat8 b)
{
return vfloat8(_mm256_sub_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector multiplication.
*/
ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, vfloat8 b)
{
return vfloat8(_mm256_mul_ps(a.m, b.m));
}
/**
* @brief Overload: vector by scalar multiplication.
*/
ASTCENC_SIMD_INLINE vfloat8 operator*(vfloat8 a, float b)
{
return vfloat8(_mm256_mul_ps(a.m, _mm256_set1_ps(b)));
}
/**
* @brief Overload: scalar by vector multiplication.
*/
ASTCENC_SIMD_INLINE vfloat8 operator*(float a, vfloat8 b)
{
return vfloat8(_mm256_mul_ps(_mm256_set1_ps(a), b.m));
}
/**
* @brief Overload: vector by vector division.
*/
ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, vfloat8 b)
{
return vfloat8(_mm256_div_ps(a.m, b.m));
}
/**
* @brief Overload: vector by scalar division.
*/
ASTCENC_SIMD_INLINE vfloat8 operator/(vfloat8 a, float b)
{
return vfloat8(_mm256_div_ps(a.m, _mm256_set1_ps(b)));
}
/**
* @brief Overload: scalar by vector division.
*/
ASTCENC_SIMD_INLINE vfloat8 operator/(float a, vfloat8 b)
{
return vfloat8(_mm256_div_ps(_mm256_set1_ps(a), b.m));
}
/**
* @brief Overload: vector by vector equality.
*/
ASTCENC_SIMD_INLINE vmask8 operator==(vfloat8 a, vfloat8 b)
{
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_EQ_OQ));
}
/**
* @brief Overload: vector by vector inequality.
*/
ASTCENC_SIMD_INLINE vmask8 operator!=(vfloat8 a, vfloat8 b)
{
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_NEQ_OQ));
}
/**
* @brief Overload: vector by vector less than.
*/
ASTCENC_SIMD_INLINE vmask8 operator<(vfloat8 a, vfloat8 b)
{
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LT_OQ));
}
/**
* @brief Overload: vector by vector greater than.
*/
ASTCENC_SIMD_INLINE vmask8 operator>(vfloat8 a, vfloat8 b)
{
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GT_OQ));
}
/**
* @brief Overload: vector by vector less than or equal.
*/
ASTCENC_SIMD_INLINE vmask8 operator<=(vfloat8 a, vfloat8 b)
{
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_LE_OQ));
}
/**
* @brief Overload: vector by vector greater than or equal.
*/
ASTCENC_SIMD_INLINE vmask8 operator>=(vfloat8 a, vfloat8 b)
{
return vmask8(_mm256_cmp_ps(a.m, b.m, _CMP_GE_OQ));
}
/**
* @brief Return the min vector of two vectors.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, vfloat8 b)
{
return vfloat8(_mm256_min_ps(a.m, b.m));
}
/**
* @brief Return the min vector of a vector and a scalar.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 min(vfloat8 a, float b)
{
return min(a, vfloat8(b));
}
/**
* @brief Return the max vector of two vectors.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, vfloat8 b)
{
return vfloat8(_mm256_max_ps(a.m, b.m));
}
/**
* @brief Return the max vector of a vector and a scalar.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 max(vfloat8 a, float b)
{
return max(a, vfloat8(b));
}
/**
* @brief Return the clamped value between min and max.
*
* It is assumed that neither @c min nor @c max are NaN values. If @c a is NaN
* then @c min will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 clamp(float min, float max, vfloat8 a)
{
// Do not reorder - second operand will return if either is NaN
a.m = _mm256_max_ps(a.m, _mm256_set1_ps(min));
a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
return a;
}
/**
* @brief Return a clamped value between 0.0f and max.
*
* It is assumed that @c max is not a NaN value. If @c a is NaN then zero will
* be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 clampz(float max, vfloat8 a)
{
a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
a.m = _mm256_min_ps(a.m, _mm256_set1_ps(max));
return a;
}
/**
* @brief Return a clamped value between 0.0f and 1.0f.
*
* If @c a is NaN then zero will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat8 clampzo(vfloat8 a)
{
a.m = _mm256_max_ps(a.m, _mm256_setzero_ps());
a.m = _mm256_min_ps(a.m, _mm256_set1_ps(1.0f));
return a;
}
/**
* @brief Return the absolute value of the float vector.
*/
ASTCENC_SIMD_INLINE vfloat8 abs(vfloat8 a)
{
__m256 msk = _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffffff));
return vfloat8(_mm256_and_ps(a.m, msk));
}
/**
* @brief Return a float rounded to the nearest integer value.
*/
ASTCENC_SIMD_INLINE vfloat8 round(vfloat8 a)
{
constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
return vfloat8(_mm256_round_ps(a.m, flags));
}
/**
* @brief Return the horizontal minimum of a vector.
*/
ASTCENC_SIMD_INLINE vfloat8 hmin(vfloat8 a)
{
__m128 vlow = _mm256_castps256_ps128(a.m);
__m128 vhigh = _mm256_extractf128_ps(a.m, 1);
vlow = _mm_min_ps(vlow, vhigh);
// First do an horizontal reduction.
__m128 shuf = _mm_shuffle_ps(vlow, vlow, _MM_SHUFFLE(2, 3, 0, 1));
__m128 mins = _mm_min_ps(vlow, shuf);
shuf = _mm_movehl_ps(shuf, mins);
mins = _mm_min_ss(mins, shuf);
// This is the most logical implementation, but the convenience intrinsic
// is missing on older compilers (supported in g++ 9 and clang++ 9).
//__m256i r = _mm256_set_m128(m, m)
__m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(mins), mins, 1);
return vfloat8(_mm256_permute_ps(r, 0));
}
/**
* @brief Return the horizontal minimum of a vector.
*/
ASTCENC_SIMD_INLINE float hmin_s(vfloat8 a)
{
return hmin(a).lane<0>();
}
/**
* @brief Return the horizontal maximum of a vector.
*/
ASTCENC_SIMD_INLINE vfloat8 hmax(vfloat8 a)
{
__m128 vlow = _mm256_castps256_ps128(a.m);
__m128 vhigh = _mm256_extractf128_ps(a.m, 1);
vhigh = _mm_max_ps(vlow, vhigh);
// First do an horizontal reduction.
__m128 shuf = _mm_shuffle_ps(vhigh, vhigh, _MM_SHUFFLE(2, 3, 0, 1));
__m128 maxs = _mm_max_ps(vhigh, shuf);
shuf = _mm_movehl_ps(shuf,maxs);
maxs = _mm_max_ss(maxs, shuf);
// This is the most logical implementation, but the convenience intrinsic
// is missing on older compilers (supported in g++ 9 and clang++ 9).
//__m256i r = _mm256_set_m128(m, m)
__m256 r = _mm256_insertf128_ps(_mm256_castps128_ps256(maxs), maxs, 1);
return vfloat8(_mm256_permute_ps(r, 0));
}
/**
* @brief Return the horizontal maximum of a vector.
*/
ASTCENC_SIMD_INLINE float hmax_s(vfloat8 a)
{
return hmax(a).lane<0>();
}
/**
* @brief Return the horizontal sum of a vector.
*/
ASTCENC_SIMD_INLINE float hadd_s(vfloat8 a)
{
// Two sequential 4-wide adds gives invariance with 4-wide code
vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
return hadd_s(lo) + hadd_s(hi);
}
/**
* @brief Return lanes from @c b if @c cond is set, else @c a.
*/
ASTCENC_SIMD_INLINE vfloat8 select(vfloat8 a, vfloat8 b, vmask8 cond)
{
return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
}
/**
* @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
*/
ASTCENC_SIMD_INLINE vfloat8 select_msb(vfloat8 a, vfloat8 b, vmask8 cond)
{
return vfloat8(_mm256_blendv_ps(a.m, b.m, cond.m));
}
/**
* @brief Accumulate lane-wise sums for a vector, folded 4-wide.
*
* This is invariant with 4-wide implementations.
*/
ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a)
{
vfloat4 lo(_mm256_extractf128_ps(a.m, 0));
haccumulate(accum, lo);
vfloat4 hi(_mm256_extractf128_ps(a.m, 1));
haccumulate(accum, hi);
}
/**
* @brief Accumulate lane-wise sums for a vector.
*
* This is NOT invariant with 4-wide implementations.
*/
ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a)
{
accum += a;
}
/**
* @brief Accumulate masked lane-wise sums for a vector, folded 4-wide.
*
* This is invariant with 4-wide implementations.
*/
ASTCENC_SIMD_INLINE void haccumulate(vfloat4& accum, vfloat8 a, vmask8 m)
{
a = select(vfloat8::zero(), a, m);
haccumulate(accum, a);
}
/**
* @brief Accumulate masked lane-wise sums for a vector.
*
* This is NOT invariant with 4-wide implementations.
*/
ASTCENC_SIMD_INLINE void haccumulate(vfloat8& accum, vfloat8 a, vmask8 m)
{
a = select(vfloat8::zero(), a, m);
haccumulate(accum, a);
}
/**
* @brief Return the sqrt of the lanes in the vector.
*/
ASTCENC_SIMD_INLINE vfloat8 sqrt(vfloat8 a)
{
return vfloat8(_mm256_sqrt_ps(a.m));
}
/**
* @brief Load a vector of gathered results from an array;
*/
ASTCENC_SIMD_INLINE vfloat8 gatherf(const float* base, vint8 indices)
{
return vfloat8(_mm256_i32gather_ps(base, indices.m, 4));
}
/**
* @brief Store a vector to an unaligned memory address.
*/
ASTCENC_SIMD_INLINE void store(vfloat8 a, float* p)
{
_mm256_storeu_ps(p, a.m);
}
/**
* @brief Store a vector to a 32B aligned memory address.
*/
ASTCENC_SIMD_INLINE void storea(vfloat8 a, float* p)
{
_mm256_store_ps(p, a.m);
}
/**
* @brief Return a integer value for a float vector, using truncation.
*/
ASTCENC_SIMD_INLINE vint8 float_to_int(vfloat8 a)
{
return vint8(_mm256_cvttps_epi32(a.m));
}
/**
* @brief Return a integer value for a float vector, using round-to-nearest.
*/
ASTCENC_SIMD_INLINE vint8 float_to_int_rtn(vfloat8 a)
{
a = round(a);
return vint8(_mm256_cvttps_epi32(a.m));
}
/**
* @brief Return a float value for an integer vector.
*/
ASTCENC_SIMD_INLINE vfloat8 int_to_float(vint8 a)
{
return vfloat8(_mm256_cvtepi32_ps(a.m));
}
/**
* @brief Return a float value as an integer bit pattern (i.e. no conversion).
*
* It is a common trick to convert floats into integer bit patterns, perform
* some bit hackery based on knowledge they are IEEE 754 layout, and then
* convert them back again. This is the first half of that flip.
*/
ASTCENC_SIMD_INLINE vint8 float_as_int(vfloat8 a)
{
return vint8(_mm256_castps_si256(a.m));
}
/**
* @brief Return a integer value as a float bit pattern (i.e. no conversion).
*
* It is a common trick to convert floats into integer bit patterns, perform
* some bit hackery based on knowledge they are IEEE 754 layout, and then
* convert them back again. This is the second half of that flip.
*/
ASTCENC_SIMD_INLINE vfloat8 int_as_float(vint8 a)
{
return vfloat8(_mm256_castsi256_ps(a.m));
}
/**
* @brief Prepare a vtable lookup table for use with the native SIMD size.
*/
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint8& t0p)
{
// AVX2 duplicates the table within each 128-bit lane
__m128i t0n = t0.m;
t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
}
/**
* @brief Prepare a vtable lookup table for use with the native SIMD size.
*/
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint8& t0p, vint8& t1p)
{
// AVX2 duplicates the table within each 128-bit lane
__m128i t0n = t0.m;
t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
__m128i t1n = _mm_xor_si128(t0.m, t1.m);
t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
}
/**
* @brief Prepare a vtable lookup table for use with the native SIMD size.
*/
ASTCENC_SIMD_INLINE void vtable_prepare(
vint4 t0, vint4 t1, vint4 t2, vint4 t3,
vint8& t0p, vint8& t1p, vint8& t2p, vint8& t3p)
{
// AVX2 duplicates the table within each 128-bit lane
__m128i t0n = t0.m;
t0p = vint8(astcenc_mm256_set_m128i(t0n, t0n));
__m128i t1n = _mm_xor_si128(t0.m, t1.m);
t1p = vint8(astcenc_mm256_set_m128i(t1n, t1n));
__m128i t2n = _mm_xor_si128(t1.m, t2.m);
t2p = vint8(astcenc_mm256_set_m128i(t2n, t2n));
__m128i t3n = _mm_xor_si128(t2.m, t3.m);
t3p = vint8(astcenc_mm256_set_m128i(t3n, t3n));
}
/**
* @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
*/
ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 idx)
{
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
__m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
__m256i result = _mm256_shuffle_epi8(t0.m, idxx);
return vint8(result);
}
/**
* @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
*/
ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 idx)
{
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
__m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
__m256i result = _mm256_shuffle_epi8(t0.m, idxx);
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
__m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
result = _mm256_xor_si256(result, result2);
return vint8(result);
}
/**
* @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
*/
ASTCENC_SIMD_INLINE vint8 vtable_8bt_32bi(vint8 t0, vint8 t1, vint8 t2, vint8 t3, vint8 idx)
{
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
__m256i idxx = _mm256_or_si256(idx.m, _mm256_set1_epi32(static_cast<int>(0xFFFFFF00)));
__m256i result = _mm256_shuffle_epi8(t0.m, idxx);
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
__m256i result2 = _mm256_shuffle_epi8(t1.m, idxx);
result = _mm256_xor_si256(result, result2);
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
result2 = _mm256_shuffle_epi8(t2.m, idxx);
result = _mm256_xor_si256(result, result2);
idxx = _mm256_sub_epi8(idxx, _mm256_set1_epi8(16));
result2 = _mm256_shuffle_epi8(t3.m, idxx);
result = _mm256_xor_si256(result, result2);
return vint8(result);
}
/**
* @brief Return a vector of interleaved RGBA data.
*
* Input vectors have the value stored in the bottom 8 bits of each lane,
* with high bits set to zero.
*
* Output vector stores a single RGBA texel packed in each lane.
*/
ASTCENC_SIMD_INLINE vint8 interleave_rgba8(vint8 r, vint8 g, vint8 b, vint8 a)
{
return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
}
/**
* @brief Store a vector, skipping masked lanes.
*
* All masked lanes must be at the end of vector, after all non-masked lanes.
*/
ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint8 data, vmask8 mask)
{
_mm256_maskstore_epi32(base, _mm256_castps_si256(mask.m), data.m);
}
/**
* @brief Debug function to print a vector of ints.
*/
ASTCENC_SIMD_INLINE void print(vint8 a)
{
alignas(ASTCENC_VECALIGN) int v[8];
storea(a, v);
printf("v8_i32:\n %8d %8d %8d %8d %8d %8d %8d %8d\n",
v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
}
/**
* @brief Debug function to print a vector of ints.
*/
ASTCENC_SIMD_INLINE void printx(vint8 a)
{
alignas(ASTCENC_VECALIGN) int v[8];
storea(a, v);
printf("v8_i32:\n %08x %08x %08x %08x %08x %08x %08x %08x\n",
v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
}
/**
* @brief Debug function to print a vector of floats.
*/
ASTCENC_SIMD_INLINE void print(vfloat8 a)
{
alignas(ASTCENC_VECALIGN) float v[8];
storea(a, v);
printf("v8_f32:\n %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f %0.4f\n",
static_cast<double>(v[0]), static_cast<double>(v[1]),
static_cast<double>(v[2]), static_cast<double>(v[3]),
static_cast<double>(v[4]), static_cast<double>(v[5]),
static_cast<double>(v[6]), static_cast<double>(v[7]));
}
/**
* @brief Debug function to print a vector of masks.
*/
ASTCENC_SIMD_INLINE void print(vmask8 a)
{
print(select(vint8(0), vint8(1), a));
}
#endif // #ifndef ASTC_VECMATHLIB_AVX2_8_H_INCLUDED