godot/servers/rendering/renderer_rd/renderer_canvas_render_rd.cpp
2021-01-09 23:22:59 +03:00

2803 lines
103 KiB
C++

/*************************************************************************/
/* renderer_canvas_render_rd.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "renderer_canvas_render_rd.h"
#include "core/config/project_settings.h"
#include "core/math/geometry_2d.h"
#include "core/math/math_funcs.h"
#include "renderer_compositor_rd.h"
void RendererCanvasRenderRD::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.elements[0][0];
p_mat4[1] = p_transform.elements[0][1];
p_mat4[2] = 0;
p_mat4[3] = 0;
p_mat4[4] = p_transform.elements[1][0];
p_mat4[5] = p_transform.elements[1][1];
p_mat4[6] = 0;
p_mat4[7] = 0;
p_mat4[8] = 0;
p_mat4[9] = 0;
p_mat4[10] = 1;
p_mat4[11] = 0;
p_mat4[12] = p_transform.elements[2][0];
p_mat4[13] = p_transform.elements[2][1];
p_mat4[14] = 0;
p_mat4[15] = 1;
}
void RendererCanvasRenderRD::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) {
p_mat2x4[0] = p_transform.elements[0][0];
p_mat2x4[1] = p_transform.elements[1][0];
p_mat2x4[2] = 0;
p_mat2x4[3] = p_transform.elements[2][0];
p_mat2x4[4] = p_transform.elements[0][1];
p_mat2x4[5] = p_transform.elements[1][1];
p_mat2x4[6] = 0;
p_mat2x4[7] = p_transform.elements[2][1];
}
void RendererCanvasRenderRD::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) {
p_mat2x3[0] = p_transform.elements[0][0];
p_mat2x3[1] = p_transform.elements[0][1];
p_mat2x3[2] = p_transform.elements[1][0];
p_mat2x3[3] = p_transform.elements[1][1];
p_mat2x3[4] = p_transform.elements[2][0];
p_mat2x3[5] = p_transform.elements[2][1];
}
void RendererCanvasRenderRD::_update_transform_to_mat4(const Transform &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.basis.elements[0][0];
p_mat4[1] = p_transform.basis.elements[1][0];
p_mat4[2] = p_transform.basis.elements[2][0];
p_mat4[3] = 0;
p_mat4[4] = p_transform.basis.elements[0][1];
p_mat4[5] = p_transform.basis.elements[1][1];
p_mat4[6] = p_transform.basis.elements[2][1];
p_mat4[7] = 0;
p_mat4[8] = p_transform.basis.elements[0][2];
p_mat4[9] = p_transform.basis.elements[1][2];
p_mat4[10] = p_transform.basis.elements[2][2];
p_mat4[11] = 0;
p_mat4[12] = p_transform.origin.x;
p_mat4[13] = p_transform.origin.y;
p_mat4[14] = p_transform.origin.z;
p_mat4[15] = 1;
}
RendererCanvasRender::PolygonID RendererCanvasRenderRD::request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, const Vector<int> &p_bones, const Vector<float> &p_weights) {
// Care must be taken to generate array formats
// in ways where they could be reused, so we will
// put single-occuring elements first, and repeated
// elements later. This way the generated formats are
// the same no matter the length of the arrays.
// This dramatically reduces the amount of pipeline objects
// that need to be created for these formats.
uint32_t vertex_count = p_points.size();
uint32_t stride = 2; //vertices always repeat
if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) {
stride += 4;
}
if ((uint32_t)p_uvs.size() == vertex_count) {
stride += 2;
}
if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) {
stride += 4;
}
uint32_t buffer_size = stride * p_points.size();
Vector<uint8_t> polygon_buffer;
polygon_buffer.resize(buffer_size * sizeof(float));
Vector<RD::VertexAttribute> descriptions;
descriptions.resize(5);
Vector<RID> buffers;
buffers.resize(5);
{
const uint8_t *r = polygon_buffer.ptr();
float *fptr = (float *)r;
uint32_t *uptr = (uint32_t *)r;
uint32_t base_offset = 0;
{ //vertices
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_VERTEX;
vd.stride = stride * sizeof(float);
descriptions.write[0] = vd;
const Vector2 *points_ptr = p_points.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = points_ptr[i].x;
fptr[base_offset + i * stride + 1] = points_ptr[i].y;
}
base_offset += 2;
}
//colors
if ((uint32_t)p_colors.size() == vertex_count || p_colors.size() == 1) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_COLOR;
vd.stride = stride * sizeof(float);
descriptions.write[1] = vd;
if (p_colors.size() == 1) {
Color color = p_colors[0];
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color.r;
fptr[base_offset + i * stride + 1] = color.g;
fptr[base_offset + i * stride + 2] = color.b;
fptr[base_offset + i * stride + 3] = color.a;
}
} else {
const Color *color_ptr = p_colors.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color_ptr[i].r;
fptr[base_offset + i * stride + 1] = color_ptr[i].g;
fptr[base_offset + i * stride + 2] = color_ptr[i].b;
fptr[base_offset + i * stride + 3] = color_ptr[i].a;
}
}
base_offset += 4;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = 0;
vd.location = RS::ARRAY_COLOR;
vd.stride = 0;
descriptions.write[1] = vd;
buffers.write[1] = storage->mesh_get_default_rd_buffer(RendererStorageRD::DEFAULT_RD_BUFFER_COLOR);
}
//uvs
if ((uint32_t)p_uvs.size() == vertex_count) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_TEX_UV;
vd.stride = stride * sizeof(float);
descriptions.write[2] = vd;
const Vector2 *uv_ptr = p_uvs.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = uv_ptr[i].x;
fptr[base_offset + i * stride + 1] = uv_ptr[i].y;
}
base_offset += 2;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
vd.offset = 0;
vd.location = RS::ARRAY_TEX_UV;
vd.stride = 0;
descriptions.write[2] = vd;
buffers.write[2] = storage->mesh_get_default_rd_buffer(RendererStorageRD::DEFAULT_RD_BUFFER_TEX_UV);
}
//bones
if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_BONES;
vd.stride = stride * sizeof(float);
descriptions.write[3] = vd;
const int *bone_ptr = p_bones.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride];
bone16w[0] = bone_ptr[i * 4 + 0];
bone16w[1] = bone_ptr[i * 4 + 1];
bone16w[2] = bone_ptr[i * 4 + 2];
bone16w[3] = bone_ptr[i * 4 + 3];
}
base_offset += 2;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
vd.offset = 0;
vd.location = RS::ARRAY_BONES;
vd.stride = 0;
descriptions.write[3] = vd;
buffers.write[3] = storage->mesh_get_default_rd_buffer(RendererStorageRD::DEFAULT_RD_BUFFER_BONES);
}
//weights
if ((uint32_t)p_weights.size() == vertex_count * 4) {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
vd.offset = base_offset * sizeof(float);
vd.location = RS::ARRAY_WEIGHTS;
vd.stride = stride * sizeof(float);
descriptions.write[4] = vd;
const float *weight_ptr = p_weights.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride];
weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535);
weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535);
weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535);
weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535);
}
base_offset += 2;
} else {
RD::VertexAttribute vd;
vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
vd.offset = 0;
vd.location = RS::ARRAY_WEIGHTS;
vd.stride = 0;
descriptions.write[4] = vd;
buffers.write[4] = storage->mesh_get_default_rd_buffer(RendererStorageRD::DEFAULT_RD_BUFFER_BONES);
}
//check that everything is as it should be
ERR_FAIL_COND_V(base_offset != stride, 0); //bug
}
RD::VertexFormatID vertex_id = RD::get_singleton()->vertex_format_create(descriptions);
ERR_FAIL_COND_V(vertex_id == RD::INVALID_ID, 0);
PolygonBuffers pb;
pb.vertex_buffer = RD::get_singleton()->vertex_buffer_create(polygon_buffer.size(), polygon_buffer);
for (int i = 0; i < descriptions.size(); i++) {
if (buffers[i] == RID()) { //if put in vertex, use as vertex
buffers.write[i] = pb.vertex_buffer;
}
}
pb.vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), vertex_id, buffers);
if (p_indices.size()) {
//create indices, as indices were requested
Vector<uint8_t> index_buffer;
index_buffer.resize(p_indices.size() * sizeof(int32_t));
{
uint8_t *w = index_buffer.ptrw();
copymem(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size());
}
pb.index_buffer = RD::get_singleton()->index_buffer_create(p_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, index_buffer);
pb.indices = RD::get_singleton()->index_array_create(pb.index_buffer, 0, p_indices.size());
}
pb.vertex_format_id = vertex_id;
PolygonID id = polygon_buffers.last_id++;
polygon_buffers.polygons[id] = pb;
return id;
}
void RendererCanvasRenderRD::free_polygon(PolygonID p_polygon) {
PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon);
ERR_FAIL_COND(!pb_ptr);
PolygonBuffers &pb = *pb_ptr;
if (pb.indices.is_valid()) {
RD::get_singleton()->free(pb.indices);
}
if (pb.index_buffer.is_valid()) {
RD::get_singleton()->free(pb.index_buffer);
}
RD::get_singleton()->free(pb.vertex_array);
RD::get_singleton()->free(pb.vertex_buffer);
polygon_buffers.polygons.erase(p_polygon);
}
////////////////////
void RendererCanvasRenderRD::_bind_canvas_texture(RD::DrawListID p_draw_list, RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, RID &r_last_texture, PushConstant &push_constant, Size2 &r_texpixel_size) {
if (p_texture == RID()) {
p_texture = default_canvas_texture;
}
if (r_last_texture == p_texture) {
return; //nothing to do, its the same
}
RID uniform_set;
Color specular_shininess;
Size2i size;
bool use_normal;
bool use_specular;
bool success = storage->canvas_texture_get_uniform_set(p_texture, p_base_filter, p_base_repeat, shader.default_version_rd_shader, CANVAS_TEXTURE_UNIFORM_SET, uniform_set, size, specular_shininess, use_normal, use_specular);
//something odd happened
if (!success) {
_bind_canvas_texture(p_draw_list, default_canvas_texture, p_base_filter, p_base_repeat, r_last_texture, push_constant, r_texpixel_size);
return;
}
RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, uniform_set, CANVAS_TEXTURE_UNIFORM_SET);
if (specular_shininess.a < 0.999) {
push_constant.flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
} else {
push_constant.flags &= ~FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
if (use_normal) {
push_constant.flags |= FLAGS_DEFAULT_NORMAL_MAP_USED;
} else {
push_constant.flags &= ~FLAGS_DEFAULT_NORMAL_MAP_USED;
}
push_constant.specular_shininess = uint32_t(CLAMP(specular_shininess.a * 255.0, 0, 255)) << 24;
push_constant.specular_shininess |= uint32_t(CLAMP(specular_shininess.b * 255.0, 0, 255)) << 16;
push_constant.specular_shininess |= uint32_t(CLAMP(specular_shininess.g * 255.0, 0, 255)) << 8;
push_constant.specular_shininess |= uint32_t(CLAMP(specular_shininess.r * 255.0, 0, 255));
r_texpixel_size.x = 1.0 / float(size.x);
r_texpixel_size.y = 1.0 / float(size.y);
push_constant.color_texture_pixel_size[0] = r_texpixel_size.x;
push_constant.color_texture_pixel_size[1] = r_texpixel_size.y;
r_last_texture = p_texture;
}
void RendererCanvasRenderRD::_render_item(RD::DrawListID p_draw_list, const Item *p_item, RD::FramebufferFormatID p_framebuffer_format, const Transform2D &p_canvas_transform_inverse, Item *&current_clip, Light *p_lights, PipelineVariants *p_pipeline_variants) {
//create an empty push constant
RS::CanvasItemTextureFilter current_filter = default_filter;
RS::CanvasItemTextureRepeat current_repeat = default_repeat;
if (p_item->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT) {
current_filter = p_item->texture_filter;
}
if (p_item->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT) {
current_repeat = p_item->texture_repeat;
}
PushConstant push_constant;
Transform2D base_transform = p_canvas_transform_inverse * p_item->final_transform;
_update_transform_2d_to_mat2x3(base_transform, push_constant.world);
Color base_color = p_item->final_modulate;
for (int i = 0; i < 4; i++) {
push_constant.modulation[i] = 0;
push_constant.ninepatch_margins[i] = 0;
push_constant.src_rect[i] = 0;
push_constant.dst_rect[i] = 0;
}
push_constant.flags = 0;
push_constant.color_texture_pixel_size[0] = 0;
push_constant.color_texture_pixel_size[1] = 0;
push_constant.pad[0] = 0;
push_constant.pad[1] = 0;
push_constant.lights[0] = 0;
push_constant.lights[1] = 0;
push_constant.lights[2] = 0;
push_constant.lights[3] = 0;
uint32_t base_flags = 0;
uint16_t light_count = 0;
PipelineLightMode light_mode;
{
Light *light = p_lights;
while (light) {
if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) {
uint32_t light_index = light->render_index_cache;
push_constant.lights[light_count >> 2] |= light_index << ((light_count & 3) * 8);
light_count++;
if (light_count == MAX_LIGHTS_PER_ITEM) {
break;
}
}
light = light->next_ptr;
}
base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT;
}
light_mode = (light_count > 0 || using_directional_lights) ? PIPELINE_LIGHT_MODE_ENABLED : PIPELINE_LIGHT_MODE_DISABLED;
PipelineVariants *pipeline_variants = p_pipeline_variants;
bool reclip = false;
RID last_texture;
Size2 texpixel_size;
const Item::Command *c = p_item->commands;
while (c) {
push_constant.flags = base_flags | (push_constant.flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); //reset on each command for sanity, keep canvastexture binding config
switch (c->type) {
case Item::Command::TYPE_RECT: {
const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c);
//bind pipeline
{
RID pipeline = pipeline_variants->variants[light_mode][PIPELINE_VARIANT_QUAD].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
//bind textures
_bind_canvas_texture(p_draw_list, rect->texture, current_filter, current_repeat, last_texture, push_constant, texpixel_size);
Rect2 src_rect;
Rect2 dst_rect;
if (rect->texture != RID()) {
src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * texpixel_size, rect->source.size * texpixel_size) : Rect2(0, 0, 1, 1);
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
if (rect->flags & CANVAS_RECT_FLIP_H) {
src_rect.size.x *= -1;
}
if (rect->flags & CANVAS_RECT_FLIP_V) {
src_rect.size.y *= -1;
}
if (rect->flags & CANVAS_RECT_TRANSPOSE) {
dst_rect.size.x *= -1; // Encoding in the dst_rect.z uniform
}
if (rect->flags & CANVAS_RECT_CLIP_UV) {
push_constant.flags |= FLAGS_CLIP_RECT_UV;
}
} else {
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
src_rect = Rect2(0, 0, 1, 1);
}
push_constant.modulation[0] = rect->modulate.r * base_color.r;
push_constant.modulation[1] = rect->modulate.g * base_color.g;
push_constant.modulation[2] = rect->modulate.b * base_color.b;
push_constant.modulation[3] = rect->modulate.a * base_color.a;
push_constant.src_rect[0] = src_rect.position.x;
push_constant.src_rect[1] = src_rect.position.y;
push_constant.src_rect[2] = src_rect.size.width;
push_constant.src_rect[3] = src_rect.size.height;
push_constant.dst_rect[0] = dst_rect.position.x;
push_constant.dst_rect[1] = dst_rect.position.y;
push_constant.dst_rect[2] = dst_rect.size.width;
push_constant.dst_rect[3] = dst_rect.size.height;
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, shader.quad_index_array);
RD::get_singleton()->draw_list_draw(p_draw_list, true);
} break;
case Item::Command::TYPE_NINEPATCH: {
const Item::CommandNinePatch *np = static_cast<const Item::CommandNinePatch *>(c);
//bind pipeline
{
RID pipeline = pipeline_variants->variants[light_mode][PIPELINE_VARIANT_NINEPATCH].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
//bind textures
_bind_canvas_texture(p_draw_list, np->texture, current_filter, current_repeat, last_texture, push_constant, texpixel_size);
Rect2 src_rect;
Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y);
if (np->texture == RID()) {
texpixel_size = Size2(1, 1);
src_rect = Rect2(0, 0, 1, 1);
} else {
if (np->source != Rect2()) {
src_rect = Rect2(np->source.position.x * texpixel_size.width, np->source.position.y * texpixel_size.height, np->source.size.x * texpixel_size.width, np->source.size.y * texpixel_size.height);
push_constant.color_texture_pixel_size[0] = 1.0 / np->source.size.width;
push_constant.color_texture_pixel_size[1] = 1.0 / np->source.size.height;
} else {
src_rect = Rect2(0, 0, 1, 1);
}
}
push_constant.modulation[0] = np->color.r * base_color.r;
push_constant.modulation[1] = np->color.g * base_color.g;
push_constant.modulation[2] = np->color.b * base_color.b;
push_constant.modulation[3] = np->color.a * base_color.a;
push_constant.src_rect[0] = src_rect.position.x;
push_constant.src_rect[1] = src_rect.position.y;
push_constant.src_rect[2] = src_rect.size.width;
push_constant.src_rect[3] = src_rect.size.height;
push_constant.dst_rect[0] = dst_rect.position.x;
push_constant.dst_rect[1] = dst_rect.position.y;
push_constant.dst_rect[2] = dst_rect.size.width;
push_constant.dst_rect[3] = dst_rect.size.height;
push_constant.flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT;
push_constant.flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT;
if (np->draw_center) {
push_constant.flags |= FLAGS_NINEPACH_DRAW_CENTER;
}
push_constant.ninepatch_margins[0] = np->margin[SIDE_LEFT];
push_constant.ninepatch_margins[1] = np->margin[SIDE_TOP];
push_constant.ninepatch_margins[2] = np->margin[SIDE_RIGHT];
push_constant.ninepatch_margins[3] = np->margin[SIDE_BOTTOM];
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, shader.quad_index_array);
RD::get_singleton()->draw_list_draw(p_draw_list, true);
//restore if overrided
push_constant.color_texture_pixel_size[0] = texpixel_size.x;
push_constant.color_texture_pixel_size[1] = texpixel_size.y;
} break;
case Item::Command::TYPE_POLYGON: {
const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(c);
PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id);
ERR_CONTINUE(!pb);
//bind pipeline
{
static const PipelineVariant variant[RS::PRIMITIVE_MAX] = { PIPELINE_VARIANT_ATTRIBUTE_POINTS, PIPELINE_VARIANT_ATTRIBUTE_LINES, PIPELINE_VARIANT_ATTRIBUTE_LINES_STRIP, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLES, PIPELINE_VARIANT_ATTRIBUTE_TRIANGLE_STRIP };
ERR_CONTINUE(polygon->primitive < 0 || polygon->primitive >= RS::PRIMITIVE_MAX);
RID pipeline = pipeline_variants->variants[light_mode][variant[polygon->primitive]].get_render_pipeline(pb->vertex_format_id, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
if (polygon->primitive == RS::PRIMITIVE_LINES) {
//not supported in most hardware, so pointless
//RD::get_singleton()->draw_list_set_line_width(p_draw_list, polygon->line_width);
}
//bind textures
_bind_canvas_texture(p_draw_list, polygon->texture, current_filter, current_repeat, last_texture, push_constant, texpixel_size);
push_constant.modulation[0] = base_color.r;
push_constant.modulation[1] = base_color.g;
push_constant.modulation[2] = base_color.b;
push_constant.modulation[3] = base_color.a;
for (int j = 0; j < 4; j++) {
push_constant.src_rect[j] = 0;
push_constant.dst_rect[j] = 0;
push_constant.ninepatch_margins[j] = 0;
}
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_bind_vertex_array(p_draw_list, pb->vertex_array);
if (pb->indices.is_valid()) {
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, pb->indices);
}
RD::get_singleton()->draw_list_draw(p_draw_list, pb->indices.is_valid());
} break;
case Item::Command::TYPE_PRIMITIVE: {
const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(c);
//bind pipeline
{
static const PipelineVariant variant[4] = { PIPELINE_VARIANT_PRIMITIVE_POINTS, PIPELINE_VARIANT_PRIMITIVE_LINES, PIPELINE_VARIANT_PRIMITIVE_TRIANGLES, PIPELINE_VARIANT_PRIMITIVE_TRIANGLES };
ERR_CONTINUE(primitive->point_count == 0 || primitive->point_count > 4);
RID pipeline = pipeline_variants->variants[light_mode][variant[primitive->point_count - 1]].get_render_pipeline(RD::INVALID_ID, p_framebuffer_format);
RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, pipeline);
}
//bind textures
_bind_canvas_texture(p_draw_list, RID(), current_filter, current_repeat, last_texture, push_constant, texpixel_size);
RD::get_singleton()->draw_list_bind_index_array(p_draw_list, primitive_arrays.index_array[MIN(3, primitive->point_count) - 1]);
for (uint32_t j = 0; j < MIN(3, primitive->point_count); j++) {
push_constant.points[j * 2 + 0] = primitive->points[j].x;
push_constant.points[j * 2 + 1] = primitive->points[j].y;
push_constant.uvs[j * 2 + 0] = primitive->uvs[j].x;
push_constant.uvs[j * 2 + 1] = primitive->uvs[j].y;
Color col = primitive->colors[j] * base_color;
push_constant.colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
push_constant.colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_draw(p_draw_list, true);
if (primitive->point_count == 4) {
for (uint32_t j = 1; j < 3; j++) {
//second half of triangle
push_constant.points[j * 2 + 0] = primitive->points[j + 1].x;
push_constant.points[j * 2 + 1] = primitive->points[j + 1].y;
push_constant.uvs[j * 2 + 0] = primitive->uvs[j + 1].x;
push_constant.uvs[j * 2 + 1] = primitive->uvs[j + 1].y;
Color col = primitive->colors[j + 1] * base_color;
push_constant.colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
push_constant.colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(PushConstant));
RD::get_singleton()->draw_list_draw(p_draw_list, true);
}
} break;
case Item::Command::TYPE_MESH:
case Item::Command::TYPE_MULTIMESH:
case Item::Command::TYPE_PARTICLES: {
ERR_PRINT("FIXME: Mesh, MultiMesh and Particles render commands are unimplemented currently, they need to be ported to the 4.0 rendering architecture.");
#ifndef _MSC_VER
#warning Item::Command types for Mesh, MultiMesh and Particles need to be implemented.
#endif
// See #if 0'ed code below to port from GLES3.
} break;
#if 0
case Item::Command::TYPE_MESH: {
Item::CommandMesh *mesh = static_cast<Item::CommandMesh *>(c);
_set_texture_rect_mode(false);
RasterizerStorageGLES3::Texture *texture = _bind_canvas_texture(mesh->texture, mesh->normal_map);
if (texture) {
Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height);
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, texpixel_size);
}
state.canvas_shader.set_uniform(CanvasShaderGLES3::MODELVIEW_MATRIX, state.final_transform * mesh->transform);
RasterizerStorageGLES3::Mesh *mesh_data = storage->mesh_owner.getornull(mesh->mesh);
if (mesh_data) {
for (int j = 0; j < mesh_data->surfaces.size(); j++) {
RasterizerStorageGLES3::Surface *s = mesh_data->surfaces[j];
// materials are ignored in 2D meshes, could be added but many things (ie, lighting mode, reading from screen, etc) would break as they are not meant be set up at this point of drawing
glBindVertexArray(s->array_id);
glVertexAttrib4f(RS::ARRAY_COLOR, mesh->modulate.r, mesh->modulate.g, mesh->modulate.b, mesh->modulate.a);
if (s->index_array_len) {
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
} else {
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
}
glBindVertexArray(0);
}
}
state.canvas_shader.set_uniform(CanvasShaderGLES3::MODELVIEW_MATRIX, state.final_transform);
} break;
case Item::Command::TYPE_MULTIMESH: {
Item::CommandMultiMesh *mmesh = static_cast<Item::CommandMultiMesh *>(c);
RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getornull(mmesh->multimesh);
if (!multi_mesh)
break;
RasterizerStorageGLES3::Mesh *mesh_data = storage->mesh_owner.getornull(multi_mesh->mesh);
if (!mesh_data)
break;
RasterizerStorageGLES3::Texture *texture = _bind_canvas_texture(mmesh->texture, mmesh->normal_map);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, multi_mesh->custom_data_format != RS::MULTIMESH_CUSTOM_DATA_NONE);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, true);
//reset shader and force rebind
state.using_texture_rect = true;
_set_texture_rect_mode(false);
if (texture) {
Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height);
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, texpixel_size);
}
int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
if (amount == -1) {
amount = multi_mesh->size;
}
for (int j = 0; j < mesh_data->surfaces.size(); j++) {
RasterizerStorageGLES3::Surface *s = mesh_data->surfaces[j];
// materials are ignored in 2D meshes, could be added but many things (ie, lighting mode, reading from screen, etc) would break as they are not meant be set up at this point of drawing
glBindVertexArray(s->instancing_array_id);
glBindBuffer(GL_ARRAY_BUFFER, multi_mesh->buffer); //modify the buffer
int stride = (multi_mesh->xform_floats + multi_mesh->color_floats + multi_mesh->custom_data_floats) * 4;
glEnableVertexAttribArray(8);
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(0));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9);
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(4 * 4));
glVertexAttribDivisor(9, 1);
int color_ofs;
if (multi_mesh->transform_format == RS::MULTIMESH_TRANSFORM_3D) {
glEnableVertexAttribArray(10);
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(8 * 4));
glVertexAttribDivisor(10, 1);
color_ofs = 12 * 4;
} else {
glDisableVertexAttribArray(10);
glVertexAttrib4f(10, 0, 0, 1, 0);
color_ofs = 8 * 4;
}
int custom_data_ofs = color_ofs;
switch (multi_mesh->color_format) {
case RS::MULTIMESH_COLOR_NONE: {
glDisableVertexAttribArray(11);
glVertexAttrib4f(11, 1, 1, 1, 1);
} break;
case RS::MULTIMESH_COLOR_8BIT: {
glEnableVertexAttribArray(11);
glVertexAttribPointer(11, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(color_ofs));
glVertexAttribDivisor(11, 1);
custom_data_ofs += 4;
} break;
case RS::MULTIMESH_COLOR_FLOAT: {
glEnableVertexAttribArray(11);
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(color_ofs));
glVertexAttribDivisor(11, 1);
custom_data_ofs += 4 * 4;
} break;
}
switch (multi_mesh->custom_data_format) {
case RS::MULTIMESH_CUSTOM_DATA_NONE: {
glDisableVertexAttribArray(12);
glVertexAttrib4f(12, 1, 1, 1, 1);
} break;
case RS::MULTIMESH_CUSTOM_DATA_8BIT: {
glEnableVertexAttribArray(12);
glVertexAttribPointer(12, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(custom_data_ofs));
glVertexAttribDivisor(12, 1);
} break;
case RS::MULTIMESH_CUSTOM_DATA_FLOAT: {
glEnableVertexAttribArray(12);
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(custom_data_ofs));
glVertexAttribDivisor(12, 1);
} break;
}
if (s->index_array_len) {
glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount);
} else {
glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount);
}
glBindVertexArray(0);
}
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, false);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, false);
state.using_texture_rect = true;
_set_texture_rect_mode(false);
} break;
case Item::Command::TYPE_PARTICLES: {
Item::CommandParticles *particles_cmd = static_cast<Item::CommandParticles *>(c);
RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getornull(particles_cmd->particles);
if (!particles)
break;
if (particles->inactive && !particles->emitting)
break;
glVertexAttrib4f(RS::ARRAY_COLOR, 1, 1, 1, 1); //not used, so keep white
RenderingServerDefault::redraw_request();
storage->particles_request_process(particles_cmd->particles);
//enable instancing
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, true);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_PARTICLES, true);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, true);
//reset shader and force rebind
state.using_texture_rect = true;
_set_texture_rect_mode(false);
RasterizerStorageGLES3::Texture *texture = _bind_canvas_texture(particles_cmd->texture, particles_cmd->normal_map);
if (texture) {
Size2 texpixel_size(1.0 / texture->width, 1.0 / texture->height);
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, texpixel_size);
} else {
state.canvas_shader.set_uniform(CanvasShaderGLES3::COLOR_TEXPIXEL_SIZE, Vector2(1.0, 1.0));
}
if (!particles->use_local_coords) {
Transform2D inv_xf;
inv_xf.set_axis(0, Vector2(particles->emission_transform.basis.get_axis(0).x, particles->emission_transform.basis.get_axis(0).y));
inv_xf.set_axis(1, Vector2(particles->emission_transform.basis.get_axis(1).x, particles->emission_transform.basis.get_axis(1).y));
inv_xf.set_origin(Vector2(particles->emission_transform.get_origin().x, particles->emission_transform.get_origin().y));
inv_xf.affine_invert();
state.canvas_shader.set_uniform(CanvasShaderGLES3::MODELVIEW_MATRIX, state.final_transform * inv_xf);
}
glBindVertexArray(data.particle_quad_array); //use particle quad array
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[0]); //bind particle buffer
int stride = sizeof(float) * 4 * 6;
int amount = particles->amount;
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_LIFETIME) {
glEnableVertexAttribArray(8); //xform x
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 3));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9); //xform y
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 4));
glVertexAttribDivisor(9, 1);
glEnableVertexAttribArray(10); //xform z
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 5));
glVertexAttribDivisor(10, 1);
glEnableVertexAttribArray(11); //color
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, nullptr);
glVertexAttribDivisor(11, 1);
glEnableVertexAttribArray(12); //custom
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 2));
glVertexAttribDivisor(12, 1);
glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, amount);
} else {
//split
int split = int(Math::ceil(particles->phase * particles->amount));
if (amount - split > 0) {
glEnableVertexAttribArray(8); //xform x
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 3));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9); //xform y
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 4));
glVertexAttribDivisor(9, 1);
glEnableVertexAttribArray(10); //xform z
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 5));
glVertexAttribDivisor(10, 1);
glEnableVertexAttribArray(11); //color
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + 0));
glVertexAttribDivisor(11, 1);
glEnableVertexAttribArray(12); //custom
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 2));
glVertexAttribDivisor(12, 1);
glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, amount - split);
}
if (split > 0) {
glEnableVertexAttribArray(8); //xform x
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 3));
glVertexAttribDivisor(8, 1);
glEnableVertexAttribArray(9); //xform y
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 4));
glVertexAttribDivisor(9, 1);
glEnableVertexAttribArray(10); //xform z
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 5));
glVertexAttribDivisor(10, 1);
glEnableVertexAttribArray(11); //color
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, nullptr);
glVertexAttribDivisor(11, 1);
glEnableVertexAttribArray(12); //custom
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 2));
glVertexAttribDivisor(12, 1);
glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, split);
}
}
glBindVertexArray(0);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCE_CUSTOM, false);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_PARTICLES, false);
state.canvas_shader.set_conditional(CanvasShaderGLES3::USE_INSTANCING, false);
state.using_texture_rect = true;
_set_texture_rect_mode(false);
} break;
#endif
case Item::Command::TYPE_TRANSFORM: {
const Item::CommandTransform *transform = static_cast<const Item::CommandTransform *>(c);
_update_transform_2d_to_mat2x3(base_transform * transform->xform, push_constant.world);
} break;
case Item::Command::TYPE_CLIP_IGNORE: {
const Item::CommandClipIgnore *ci = static_cast<const Item::CommandClipIgnore *>(c);
if (current_clip) {
if (ci->ignore != reclip) {
if (ci->ignore) {
RD::get_singleton()->draw_list_disable_scissor(p_draw_list);
reclip = true;
} else {
RD::get_singleton()->draw_list_enable_scissor(p_draw_list, current_clip->final_clip_rect);
reclip = false;
}
}
}
} break;
}
c = c->next;
}
if (current_clip && reclip) {
//will make it re-enable clipping if needed afterwards
current_clip = nullptr;
}
}
RID RendererCanvasRenderRD::_create_base_uniform_set(RID p_to_render_target, bool p_backbuffer) {
//re create canvas state
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 1;
u.ids.push_back(state.canvas_state_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 2;
u.ids.push_back(state.lights_uniform_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 3;
u.ids.push_back(storage->decal_atlas_get_texture());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 4;
u.ids.push_back(state.shadow_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 5;
u.ids.push_back(state.shadow_sampler);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 6;
RID screen;
if (p_backbuffer) {
screen = storage->render_target_get_rd_texture(p_to_render_target);
} else {
screen = storage->render_target_get_rd_backbuffer(p_to_render_target);
if (screen.is_null()) { //unallocated backbuffer
screen = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE);
}
}
u.ids.push_back(screen);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 7;
RID sdf = storage->render_target_get_sdf_texture(p_to_render_target);
u.ids.push_back(sdf);
uniforms.push_back(u);
}
{
//needs samplers for the material (uses custom textures) create them
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 8;
u.ids.resize(12);
RID *ids_ptr = u.ids.ptrw();
ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 9;
u.ids.push_back(storage->global_variables_get_storage_buffer());
uniforms.push_back(u);
}
RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, BASE_UNIFORM_SET);
if (p_backbuffer) {
storage->render_target_set_backbuffer_uniform_set(p_to_render_target, uniform_set);
} else {
storage->render_target_set_framebuffer_uniform_set(p_to_render_target, uniform_set);
}
return uniform_set;
}
void RendererCanvasRenderRD::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool p_to_backbuffer) {
Item *current_clip = nullptr;
Transform2D canvas_transform_inverse = p_canvas_transform_inverse;
RID framebuffer;
RID fb_uniform_set;
bool clear = false;
Vector<Color> clear_colors;
if (p_to_backbuffer) {
framebuffer = storage->render_target_get_rd_backbuffer_framebuffer(p_to_render_target);
fb_uniform_set = storage->render_target_get_backbuffer_uniform_set(p_to_render_target);
} else {
framebuffer = storage->render_target_get_rd_framebuffer(p_to_render_target);
if (storage->render_target_is_clear_requested(p_to_render_target)) {
clear = true;
clear_colors.push_back(storage->render_target_get_clear_request_color(p_to_render_target));
storage->render_target_disable_clear_request(p_to_render_target);
}
#ifndef _MSC_VER
#warning TODO obtain from framebuffer format eventually when this is implemented
#endif
fb_uniform_set = storage->render_target_get_framebuffer_uniform_set(p_to_render_target);
}
if (fb_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fb_uniform_set)) {
fb_uniform_set = _create_base_uniform_set(p_to_render_target, p_to_backbuffer);
}
RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, clear ? RD::INITIAL_ACTION_CLEAR : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, clear_colors);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, fb_uniform_set, BASE_UNIFORM_SET);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, state.default_transforms_uniform_set, TRANSFORMS_UNIFORM_SET);
RID prev_material;
PipelineVariants *pipeline_variants = &shader.pipeline_variants;
for (int i = 0; i < p_item_count; i++) {
Item *ci = items[i];
if (current_clip != ci->final_clip_owner) {
current_clip = ci->final_clip_owner;
//setup clip
if (current_clip) {
RD::get_singleton()->draw_list_enable_scissor(draw_list, current_clip->final_clip_rect);
} else {
RD::get_singleton()->draw_list_disable_scissor(draw_list);
}
}
RID material = ci->material;
if (material.is_null() && ci->canvas_group != nullptr) {
material = default_canvas_group_material;
}
if (material != prev_material) {
MaterialData *material_data = nullptr;
if (material.is_valid()) {
material_data = (MaterialData *)storage->material_get_data(material, RendererStorageRD::SHADER_TYPE_2D);
}
if (material_data) {
if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) {
pipeline_variants = &material_data->shader_data->pipeline_variants;
if (material_data->uniform_set.is_valid()) {
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material_data->uniform_set, MATERIAL_UNIFORM_SET);
}
} else {
pipeline_variants = &shader.pipeline_variants;
}
} else {
pipeline_variants = &shader.pipeline_variants;
}
}
_render_item(draw_list, ci, fb_format, canvas_transform_inverse, current_clip, p_lights, pipeline_variants);
prev_material = material;
}
RD::get_singleton()->draw_list_end();
}
void RendererCanvasRenderRD::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RenderingServer::CanvasItemTextureFilter p_default_filter, RenderingServer::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used) {
r_sdf_used = false;
int item_count = 0;
//setup canvas state uniforms if needed
Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse();
//setup directional lights if exist
uint32_t light_count = 0;
uint32_t directional_light_count = 0;
{
Light *l = p_directional_light_list;
uint32_t index = 0;
while (l) {
if (index == state.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.getornull(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Vector2 canvas_light_dir = l->xform_cache.elements[1].normalized();
state.light_uniforms[index].position[0] = -canvas_light_dir.x;
state.light_uniforms[index].position[1] = -canvas_light_dir.y;
_update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height; //0..1 here
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255));
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] = l->energy; //use alpha for energy, so base color can go separate
if (state.shadow_fb.is_valid()) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth);
state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far;
state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset;
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
state.light_uniforms[index].shadow_z_far_inv = 1.0;
state.light_uniforms[index].shadow_y_ofs = 0;
}
state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.enabled) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
light_count = index;
directional_light_count = light_count;
using_directional_lights = directional_light_count > 0;
}
//setup lights if exist
{
Light *l = p_light_list;
uint32_t index = light_count;
while (l) {
if (index == state.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.getornull(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Transform2D to_light_xform = (p_canvas_transform * l->light_shader_xform).affine_inverse();
Vector2 canvas_light_pos = p_canvas_transform.xform(l->xform.get_origin()); //convert light position to canvas coordinates, as all computation is done in canvas coords to avoid precision loss
state.light_uniforms[index].position[0] = canvas_light_pos.x;
state.light_uniforms[index].position[1] = canvas_light_pos.y;
_update_transform_2d_to_mat2x4(to_light_xform, state.light_uniforms[index].matrix);
_update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height * (p_canvas_transform.elements[0].length() + p_canvas_transform.elements[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255));
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] = l->energy; //use alpha for energy, so base color can go separate
if (state.shadow_fb.is_valid()) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth);
state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far;
state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset;
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
state.light_uniforms[index].shadow_z_far_inv = 1.0;
state.light_uniforms[index].shadow_y_ofs = 0;
}
state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.enabled) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
if (clight->texture.is_valid()) {
Rect2 atlas_rect = storage->decal_atlas_get_texture_rect(clight->texture);
state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x;
state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y;
state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width;
state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height;
} else {
state.light_uniforms[index].atlas_rect[0] = 0;
state.light_uniforms[index].atlas_rect[1] = 0;
state.light_uniforms[index].atlas_rect[2] = 0;
state.light_uniforms[index].atlas_rect[3] = 0;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
light_count = index;
}
if (light_count > 0) {
RD::get_singleton()->buffer_update(state.lights_uniform_buffer, 0, sizeof(LightUniform) * light_count, &state.light_uniforms[0], true);
}
{
//update canvas state uniform buffer
State::Buffer state_buffer;
Size2i ssize = storage->render_target_get_size(p_to_render_target);
Transform screen_transform;
screen_transform.translate(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f);
screen_transform.scale(Vector3(2.0f / ssize.width, 2.0f / ssize.height, 1.0f));
_update_transform_to_mat4(screen_transform, state_buffer.screen_transform);
_update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform);
Transform2D normal_transform = p_canvas_transform;
normal_transform.elements[0].normalize();
normal_transform.elements[1].normalize();
normal_transform.elements[2] = Vector2();
_update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform);
state_buffer.canvas_modulate[0] = p_modulate.r;
state_buffer.canvas_modulate[1] = p_modulate.g;
state_buffer.canvas_modulate[2] = p_modulate.b;
state_buffer.canvas_modulate[3] = p_modulate.a;
Size2 render_target_size = storage->render_target_get_size(p_to_render_target);
state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x;
state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y;
state_buffer.time = state.time;
state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel;
state_buffer.directional_light_count = directional_light_count;
Vector2 canvas_scale = p_canvas_transform.get_scale();
state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x;
state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y;
state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0];
state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1];
Rect2 sdf_rect = storage->render_target_get_sdf_rect(p_to_render_target);
Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale);
state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width;
state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height;
state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width;
state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height;
//print_line("w: " + itos(ssize.width) + " s: " + rtos(canvas_scale));
state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5);
RD::get_singleton()->buffer_update(state.canvas_state_buffer, 0, sizeof(State::Buffer), &state_buffer, true);
}
{ //default filter/repeat
default_filter = p_default_filter;
default_repeat = p_default_repeat;
}
//fill the list until rendering is possible.
bool material_screen_texture_found = false;
Item *ci = p_item_list;
Rect2 back_buffer_rect;
bool backbuffer_copy = false;
Item *canvas_group_owner = nullptr;
while (ci) {
if (ci->copy_back_buffer && canvas_group_owner == nullptr) {
backbuffer_copy = true;
if (ci->copy_back_buffer->full) {
back_buffer_rect = Rect2();
} else {
back_buffer_rect = ci->copy_back_buffer->rect;
}
}
if (ci->material.is_valid()) {
MaterialData *md = (MaterialData *)storage->material_get_data(ci->material, RendererStorageRD::SHADER_TYPE_2D);
if (md && md->shader_data->valid) {
if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) {
if (!material_screen_texture_found) {
backbuffer_copy = true;
back_buffer_rect = Rect2();
}
}
if (md->shader_data->uses_sdf) {
r_sdf_used = true;
}
if (md->last_frame != RendererCompositorRD::singleton->get_frame_number()) {
md->last_frame = RendererCompositorRD::singleton->get_frame_number();
if (!RD::get_singleton()->uniform_set_is_valid(md->uniform_set)) {
// uniform set may be gone because a dependency was erased. In this case, it will happen
// if a texture is deleted, so just re-create it.
storage->material_force_update_textures(ci->material, RendererStorageRD::SHADER_TYPE_2D);
}
}
}
}
if (ci->canvas_group_owner != nullptr) {
if (canvas_group_owner == nullptr) {
//Canvas group begins here, render until before this item
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list);
item_count = 0;
Rect2i group_rect = ci->canvas_group_owner->global_rect_cache;
if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_OPAQUE) {
storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false);
} else {
storage->render_target_clear_back_buffer(p_to_render_target, group_rect, Color(0, 0, 0, 0));
}
backbuffer_copy = false;
canvas_group_owner = ci->canvas_group_owner; //continue until owner found
}
ci->canvas_group_owner = nullptr; //must be cleared
}
if (ci == canvas_group_owner) {
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, true);
item_count = 0;
if (ci->canvas_group->blur_mipmaps) {
storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache);
}
canvas_group_owner = nullptr;
}
if (backbuffer_copy) {
//render anything pending, including clearing if no items
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list);
item_count = 0;
storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, true);
backbuffer_copy = false;
material_screen_texture_found = true; //after a backbuffer copy, screen texture makes no further copies
}
items[item_count++] = ci;
if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) {
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list);
//then reset
item_count = 0;
}
ci = ci->next;
}
}
RID RendererCanvasRenderRD::light_create() {
CanvasLight canvas_light;
return canvas_light_owner.make_rid(canvas_light);
}
void RendererCanvasRenderRD::light_set_texture(RID p_rid, RID p_texture) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(!cl);
if (cl->texture == p_texture) {
return;
}
if (cl->texture.is_valid()) {
storage->texture_remove_from_decal_atlas(cl->texture);
}
cl->texture = p_texture;
if (cl->texture.is_valid()) {
storage->texture_add_to_decal_atlas(cl->texture);
}
}
void RendererCanvasRenderRD::light_set_use_shadow(RID p_rid, bool p_enable) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(!cl);
cl->shadow.enabled = p_enable;
}
void RendererCanvasRenderRD::_update_shadow_atlas() {
if (state.shadow_fb == RID()) {
//ah, we lack the shadow texture..
RD::get_singleton()->free(state.shadow_texture); //erase placeholder
Vector<RID> fb_textures;
{ //texture
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = state.shadow_texture_size;
tf.height = state.max_lights_per_render * 2;
tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
fb_textures.push_back(state.shadow_texture);
}
{
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = state.shadow_texture_size;
tf.height = state.max_lights_per_render * 2;
tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
tf.format = RD::DATA_FORMAT_D32_SFLOAT;
//chunks to write
state.shadow_depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
fb_textures.push_back(state.shadow_depth_texture);
}
state.shadow_fb = RD::get_singleton()->framebuffer_create(fb_textures);
}
}
void RendererCanvasRenderRD::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(!cl->shadow.enabled);
_update_shadow_atlas();
cl->shadow.z_far = p_far;
cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(state.max_lights_per_render * 2);
Vector<Color> cc;
cc.push_back(Color(p_far, p_far, p_far, 1.0));
for (int i = 0; i < 4; i++) {
//make sure it remains orthogonal, makes easy to read angle later
//light.basis.scale(Vector3(to_light.elements[0].length(),to_light.elements[1].length(),1));
Rect2i rect((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(state.shadow_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, rect);
CameraMatrix projection;
{
real_t fov = 90;
real_t nearp = p_near;
real_t farp = p_far;
real_t aspect = 1.0;
real_t ymax = nearp * Math::tan(Math::deg2rad(fov * 0.5));
real_t ymin = -ymax;
real_t xmin = ymin * aspect;
real_t xmax = ymax * aspect;
projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp);
}
Vector3 cam_target = Basis(Vector3(0, 0, Math_PI * 2 * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0));
projection = projection * CameraMatrix(Transform().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse());
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.matrix[y][x];
}
}
static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) };
push_constant.direction[0] = directions[i].x;
push_constant.direction[1] = directions[i].y;
push_constant.z_far = p_far;
push_constant.pad = 0;
/*if (i == 0)
*p_xform_cache = projection;*/
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.getornull(instance->occluder);
if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(p_light_xform * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
}
}
void RendererCanvasRenderRD::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND(!cl->shadow.enabled);
_update_shadow_atlas();
Vector2 light_dir = p_light_xform.elements[1].normalized();
Vector2 center = p_clip_rect.position + p_clip_rect.size * 0.5;
float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(light_dir)) - light_dir.dot(center));
Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance);
float distance = to_edge_distance * 2.0 + p_cull_distance;
float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle
cl->shadow.z_far = distance;
cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(state.max_lights_per_render * 2);
Transform2D to_light_xform;
to_light_xform[2] = from_pos;
to_light_xform[1] = light_dir;
to_light_xform[0] = -light_dir.orthogonal();
to_light_xform.invert();
Vector<Color> cc;
cc.push_back(Color(1, 1, 1, 1));
Rect2i rect(0, p_shadow_index * 2, state.shadow_texture_size, 2);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(state.shadow_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc, 1.0, 0, rect);
CameraMatrix projection;
projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance);
projection = projection * CameraMatrix(Transform().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse());
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.matrix[y][x];
}
}
push_constant.direction[0] = 0.0;
push_constant.direction[1] = 1.0;
push_constant.z_far = distance;
push_constant.pad = 0;
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.getornull(instance->occluder);
if (!co || co->index_array.is_null() || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(to_light_xform * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.render_pipelines[co->cull_mode]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
Transform2D to_shadow;
to_shadow.elements[0].x = 1.0 / -(half_size * 2.0);
to_shadow.elements[2].x = 0.5;
cl->shadow.directional_xform = to_shadow * to_light_xform;
}
void RendererCanvasRenderRD::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) {
RID fb = storage->render_target_get_sdf_framebuffer(p_render_target);
Rect2i rect = storage->render_target_get_sdf_rect(p_render_target);
Transform2D to_sdf;
to_sdf.elements[0] *= rect.size.width;
to_sdf.elements[1] *= rect.size.height;
to_sdf.elements[2] = rect.position;
Transform2D to_clip;
to_clip.elements[0] *= 2.0;
to_clip.elements[1] *= 2.0;
to_clip.elements[2] = -Vector2(1.0, 1.0);
to_clip = to_clip * to_sdf.affine_inverse();
Vector<Color> cc;
cc.push_back(Color(0, 0, 0, 0));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, cc);
CameraMatrix projection;
ShadowRenderPushConstant push_constant;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
push_constant.projection[y * 4 + x] = projection.matrix[y][x];
}
}
push_constant.direction[0] = 0.0;
push_constant.direction[1] = 0.0;
push_constant.z_far = 0;
push_constant.pad = 0;
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.getornull(instance->occluder);
if (!co || co->sdf_index_array.is_null()) {
instance = instance->next;
continue;
}
_update_transform_2d_to_mat2x4(to_clip * instance->xform_cache, push_constant.modelview);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, shadow_render.sdf_render_pipelines[co->sdf_is_lines ? SHADOW_RENDER_SDF_LINES : SHADOW_RENDER_SDF_TRIANGLES]);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, co->sdf_vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, co->sdf_index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowRenderPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
instance = instance->next;
}
RD::get_singleton()->draw_list_end();
storage->render_target_sdf_process(p_render_target); //done rendering, process it
}
RID RendererCanvasRenderRD::occluder_polygon_create() {
OccluderPolygon occluder;
occluder.line_point_count = 0;
occluder.sdf_point_count = 0;
occluder.sdf_index_count = 0;
occluder.cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED;
return occluder_polygon_owner.make_rid(occluder);
}
void RendererCanvasRenderRD::occluder_polygon_set_shape(RID p_occluder, const Vector<Vector2> &p_points, bool p_closed) {
OccluderPolygon *oc = occluder_polygon_owner.getornull(p_occluder);
ERR_FAIL_COND(!oc);
Vector<Vector2> lines;
if (p_points.size()) {
int lc = p_points.size() * 2;
lines.resize(lc - (p_closed ? 0 : 2));
{
Vector2 *w = lines.ptrw();
const Vector2 *r = p_points.ptr();
int max = lc / 2;
if (!p_closed) {
max--;
}
for (int i = 0; i < max; i++) {
Vector2 a = r[i];
Vector2 b = r[(i + 1) % (lc / 2)];
w[i * 2 + 0] = a;
w[i * 2 + 1] = b;
}
}
}
if (oc->line_point_count != lines.size() && oc->vertex_array.is_valid()) {
RD::get_singleton()->free(oc->vertex_array);
RD::get_singleton()->free(oc->vertex_buffer);
RD::get_singleton()->free(oc->index_array);
RD::get_singleton()->free(oc->index_buffer);
oc->vertex_array = RID();
oc->vertex_buffer = RID();
oc->index_array = RID();
oc->index_buffer = RID();
oc->line_point_count = lines.size();
}
if (lines.size()) {
Vector<uint8_t> geometry;
Vector<uint8_t> indices;
int lc = lines.size();
geometry.resize(lc * 6 * sizeof(float));
indices.resize(lc * 3 * sizeof(uint16_t));
{
uint8_t *vw = geometry.ptrw();
float *vwptr = (float *)vw;
uint8_t *iw = indices.ptrw();
uint16_t *iwptr = (uint16_t *)iw;
const Vector2 *lr = lines.ptr();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vwptr[i * 12 + 0] = lr[i * 2 + 0].x;
vwptr[i * 12 + 1] = lr[i * 2 + 0].y;
vwptr[i * 12 + 2] = POLY_HEIGHT;
vwptr[i * 12 + 3] = lr[i * 2 + 1].x;
vwptr[i * 12 + 4] = lr[i * 2 + 1].y;
vwptr[i * 12 + 5] = POLY_HEIGHT;
vwptr[i * 12 + 6] = lr[i * 2 + 1].x;
vwptr[i * 12 + 7] = lr[i * 2 + 1].y;
vwptr[i * 12 + 8] = -POLY_HEIGHT;
vwptr[i * 12 + 9] = lr[i * 2 + 0].x;
vwptr[i * 12 + 10] = lr[i * 2 + 0].y;
vwptr[i * 12 + 11] = -POLY_HEIGHT;
iwptr[i * 6 + 0] = i * 4 + 0;
iwptr[i * 6 + 1] = i * 4 + 1;
iwptr[i * 6 + 2] = i * 4 + 2;
iwptr[i * 6 + 3] = i * 4 + 2;
iwptr[i * 6 + 4] = i * 4 + 3;
iwptr[i * 6 + 5] = i * 4 + 0;
}
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (oc->vertex_array.is_null()) {
//create from scratch
//vertices
oc->vertex_buffer = RD::get_singleton()->vertex_buffer_create(lc * 6 * sizeof(real_t), geometry);
Vector<RID> buffer;
buffer.push_back(oc->vertex_buffer);
oc->vertex_array = RD::get_singleton()->vertex_array_create(4 * lc / 2, shadow_render.vertex_format, buffer);
//indices
oc->index_buffer = RD::get_singleton()->index_buffer_create(3 * lc, RD::INDEX_BUFFER_FORMAT_UINT16, indices);
oc->index_array = RD::get_singleton()->index_array_create(oc->index_buffer, 0, 3 * lc);
} else {
//update existing
const uint8_t *vr = geometry.ptr();
RD::get_singleton()->buffer_update(oc->vertex_buffer, 0, geometry.size(), vr);
const uint8_t *ir = indices.ptr();
RD::get_singleton()->buffer_update(oc->index_buffer, 0, indices.size(), ir);
}
}
// sdf
Vector<int> sdf_indices;
if (p_points.size()) {
if (p_closed) {
sdf_indices = Geometry2D::triangulate_polygon(p_points);
oc->sdf_is_lines = false;
} else {
int max = p_points.size();
sdf_indices.resize(max * 2);
int *iw = sdf_indices.ptrw();
for (int i = 0; i < max; i++) {
iw[i * 2 + 0] = i;
iw[i * 2 + 1] = (i + 1) % max;
}
oc->sdf_is_lines = true;
}
}
if (oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size() && oc->sdf_vertex_array.is_valid()) {
RD::get_singleton()->free(oc->sdf_vertex_array);
RD::get_singleton()->free(oc->sdf_vertex_buffer);
RD::get_singleton()->free(oc->sdf_index_array);
RD::get_singleton()->free(oc->sdf_index_buffer);
oc->sdf_vertex_array = RID();
oc->sdf_vertex_buffer = RID();
oc->sdf_index_array = RID();
oc->sdf_index_buffer = RID();
oc->sdf_index_count = sdf_indices.size();
oc->sdf_point_count = p_points.size();
oc->sdf_is_lines = false;
}
if (sdf_indices.size()) {
if (oc->sdf_vertex_array.is_null()) {
//create from scratch
//vertices
oc->sdf_vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_points.size() * 2 * sizeof(real_t), p_points.to_byte_array());
oc->sdf_index_buffer = RD::get_singleton()->index_buffer_create(sdf_indices.size(), RD::INDEX_BUFFER_FORMAT_UINT32, sdf_indices.to_byte_array());
oc->sdf_index_array = RD::get_singleton()->index_array_create(oc->sdf_index_buffer, 0, sdf_indices.size());
Vector<RID> buffer;
buffer.push_back(oc->sdf_vertex_buffer);
oc->sdf_vertex_array = RD::get_singleton()->vertex_array_create(p_points.size(), shadow_render.sdf_vertex_format, buffer);
//indices
} else {
//update existing
RD::get_singleton()->buffer_update(oc->vertex_buffer, 0, sizeof(real_t) * 2 * p_points.size(), p_points.ptr());
RD::get_singleton()->buffer_update(oc->index_buffer, 0, sdf_indices.size() * sizeof(int32_t), sdf_indices.ptr());
}
}
}
void RendererCanvasRenderRD::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) {
OccluderPolygon *oc = occluder_polygon_owner.getornull(p_occluder);
ERR_FAIL_COND(!oc);
oc->cull_mode = p_mode;
}
void RendererCanvasRenderRD::ShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
uses_screen_texture = false;
uses_sdf = false;
if (code == String()) {
return; //just invalid, but no error
}
ShaderCompilerRD::GeneratedCode gen_code;
int blend_mode = BLEND_MODE_MIX;
uses_screen_texture = false;
ShaderCompilerRD::IdentifierActions actions;
actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_mode, BLEND_MODE_ADD);
actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_mode, BLEND_MODE_MIX);
actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_mode, BLEND_MODE_SUB);
actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_mode, BLEND_MODE_MUL);
actions.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&blend_mode, BLEND_MODE_PMALPHA);
actions.render_mode_values["blend_disabled"] = Pair<int *, int>(&blend_mode, BLEND_MODE_DISABLED);
actions.usage_flag_pointers["SCREEN_TEXTURE"] = &uses_screen_texture;
actions.usage_flag_pointers["texture_sdf"] = &uses_sdf;
actions.uniforms = &uniforms;
RendererCanvasRenderRD *canvas_singleton = (RendererCanvasRenderRD *)RendererCanvasRender::singleton;
Error err = canvas_singleton->shader.compiler.compile(RS::SHADER_CANVAS_ITEM, code, &actions, path, gen_code);
ERR_FAIL_COND(err != OK);
if (version.is_null()) {
version = canvas_singleton->shader.canvas_shader.version_create();
}
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
print_line("\n**vertex_code:\n" + gen_code.vertex);
print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
print_line("\n**fragment_code:\n" + gen_code.fragment);
print_line("\n**light_code:\n" + gen_code.light);
#endif
canvas_singleton->shader.canvas_shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
ERR_FAIL_COND(!canvas_singleton->shader.canvas_shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
//update them pipelines
RD::PipelineColorBlendState::Attachment attachment;
switch (blend_mode) {
case BLEND_MODE_DISABLED: {
// nothing to do here, disabled by default
} break;
case BLEND_MODE_MIX: {
attachment.enable_blend = true;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
} break;
case BLEND_MODE_ADD: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
} break;
case BLEND_MODE_SUB: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_SUBTRACT;
attachment.color_blend_op = RD::BLEND_OP_SUBTRACT;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
} break;
case BLEND_MODE_MUL: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_DST_COLOR;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ZERO;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_DST_ALPHA;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ZERO;
} break;
case BLEND_MODE_PMALPHA: {
attachment.enable_blend = true;
attachment.alpha_blend_op = RD::BLEND_OP_ADD;
attachment.color_blend_op = RD::BLEND_OP_ADD;
attachment.src_color_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
} break;
}
RD::PipelineColorBlendState blend_state;
blend_state.attachments.push_back(attachment);
//update pipelines
for (int i = 0; i < PIPELINE_LIGHT_MODE_MAX; i++) {
for (int j = 0; j < PIPELINE_VARIANT_MAX; j++) {
RD::RenderPrimitive primitive[PIPELINE_VARIANT_MAX] = {
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_POINTS,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_LINESTRIPS,
RD::RENDER_PRIMITIVE_POINTS,
};
ShaderVariant shader_variants[PIPELINE_LIGHT_MODE_MAX][PIPELINE_VARIANT_MAX] = {
{ //non lit
SHADER_VARIANT_QUAD,
SHADER_VARIANT_NINEPATCH,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE_POINTS,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES_POINTS },
{ //lit
SHADER_VARIANT_QUAD_LIGHT,
SHADER_VARIANT_NINEPATCH_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_POINTS_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_POINTS_LIGHT },
};
RID shader_variant = canvas_singleton->shader.canvas_shader.version_get_shader(version, shader_variants[i][j]);
pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state, 0);
}
}
valid = true;
}
void RendererCanvasRenderRD::ShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
if (!p_texture.is_valid()) {
default_texture_params.erase(p_name);
} else {
default_texture_params[p_name] = p_texture;
}
}
void RendererCanvasRenderRD::ShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_LOCAL) {
continue;
}
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
pi.name = E->get();
p_param_list->push_back(pi);
}
}
void RendererCanvasRenderRD::ShaderData::get_instance_param_list(List<RendererStorage::InstanceShaderParam> *p_param_list) const {
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
RendererStorage::InstanceShaderParam p;
p.info = ShaderLanguage::uniform_to_property_info(E->get());
p.info.name = E->key(); //supply name
p.index = E->get().instance_index;
p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint);
p_param_list->push_back(p);
}
}
bool RendererCanvasRenderRD::ShaderData::is_param_texture(const StringName &p_param) const {
if (!uniforms.has(p_param)) {
return false;
}
return uniforms[p_param].texture_order >= 0;
}
bool RendererCanvasRenderRD::ShaderData::is_animated() const {
return false;
}
bool RendererCanvasRenderRD::ShaderData::casts_shadows() const {
return false;
}
Variant RendererCanvasRenderRD::ShaderData::get_default_parameter(const StringName &p_parameter) const {
if (uniforms.has(p_parameter)) {
ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
return Variant();
}
RS::ShaderNativeSourceCode RendererCanvasRenderRD::ShaderData::get_native_source_code() const {
RendererCanvasRenderRD *canvas_singleton = (RendererCanvasRenderRD *)RendererCanvasRender::singleton;
return canvas_singleton->shader.canvas_shader.version_get_native_source_code(version);
}
RendererCanvasRenderRD::ShaderData::ShaderData() {
valid = false;
uses_screen_texture = false;
uses_sdf = false;
}
RendererCanvasRenderRD::ShaderData::~ShaderData() {
RendererCanvasRenderRD *canvas_singleton = (RendererCanvasRenderRD *)RendererCanvasRender::singleton;
ERR_FAIL_COND(!canvas_singleton);
//pipeline variants will clear themselves if shader is gone
if (version.is_valid()) {
canvas_singleton->shader.canvas_shader.version_free(version);
}
}
RendererStorageRD::ShaderData *RendererCanvasRenderRD::_create_shader_func() {
ShaderData *shader_data = memnew(ShaderData);
return shader_data;
}
void RendererCanvasRenderRD::MaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
RendererCanvasRenderRD *canvas_singleton = (RendererCanvasRenderRD *)RendererCanvasRender::singleton;
if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
p_uniform_dirty = true;
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
uniform_buffer = RID();
}
ubo_data.resize(shader_data->ubo_size);
if (ubo_data.size()) {
uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
}
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
//check whether buffer changed
if (p_uniform_dirty && ubo_data.size()) {
update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
}
uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
if ((uint32_t)texture_cache.size() != tex_uniform_count) {
texture_cache.resize(tex_uniform_count);
p_textures_dirty = true;
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
if (p_textures_dirty && tex_uniform_count) {
update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), false);
}
if (shader_data->ubo_size == 0) {
// This material does not require an uniform set, so don't create it.
return;
}
if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
//no reason to update uniform set, only UBO (or nothing) was needed to update
return;
}
Vector<RD::Uniform> uniforms;
{
if (shader_data->ubo_size) {
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 0;
u.ids.push_back(uniform_buffer);
uniforms.push_back(u);
}
const RID *textures = texture_cache.ptrw();
for (uint32_t i = 0; i < tex_uniform_count; i++) {
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1 + i;
u.ids.push_back(textures[i]);
uniforms.push_back(u);
}
}
uniform_set = RD::get_singleton()->uniform_set_create(uniforms, canvas_singleton->shader.canvas_shader.version_get_shader(shader_data->version, 0), MATERIAL_UNIFORM_SET);
}
RendererCanvasRenderRD::MaterialData::~MaterialData() {
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
}
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
}
}
RendererStorageRD::MaterialData *RendererCanvasRenderRD::_create_material_func(ShaderData *p_shader) {
MaterialData *material_data = memnew(MaterialData);
material_data->shader_data = p_shader;
material_data->last_frame = false;
//update will happen later anyway so do nothing.
return material_data;
}
void RendererCanvasRenderRD::set_time(double p_time) {
state.time = p_time;
}
void RendererCanvasRenderRD::update() {
}
RendererCanvasRenderRD::RendererCanvasRenderRD(RendererStorageRD *p_storage) {
storage = p_storage;
{ //create default samplers
default_samplers.default_filter = RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR;
default_samplers.default_repeat = RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED;
}
{ //shader variants
String global_defines;
uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
if (uniform_max_size < 65536) {
//Yes, you guessed right, ARM again
state.max_lights_per_render = 64;
global_defines += "#define MAX_LIGHTS 64\n";
} else {
state.max_lights_per_render = DEFAULT_MAX_LIGHTS_PER_RENDER;
global_defines += "#define MAX_LIGHTS " + itos(DEFAULT_MAX_LIGHTS_PER_RENDER) + "\n";
}
state.light_uniforms = memnew_arr(LightUniform, state.max_lights_per_render);
Vector<String> variants;
//non light variants
variants.push_back(""); //none by default is first variant
variants.push_back("#define USE_NINEPATCH\n"); //ninepatch is the second variant
variants.push_back("#define USE_PRIMITIVE\n"); //primitive is the third
variants.push_back("#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); //points need point size
variants.push_back("#define USE_ATTRIBUTES\n"); // attributes for vertex arrays
variants.push_back("#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); //attributes with point size
//light variants
variants.push_back("#define USE_LIGHTING\n"); //none by default is first variant
variants.push_back("#define USE_LIGHTING\n#define USE_NINEPATCH\n"); //ninepatch is the second variant
variants.push_back("#define USE_LIGHTING\n#define USE_PRIMITIVE\n"); //primitive is the third
variants.push_back("#define USE_LIGHTING\n#define USE_PRIMITIVE\n#define USE_POINT_SIZE\n"); //points need point size
variants.push_back("#define USE_LIGHTING\n#define USE_ATTRIBUTES\n"); // attributes for vertex arrays
variants.push_back("#define USE_LIGHTING\n#define USE_ATTRIBUTES\n#define USE_POINT_SIZE\n"); //attributes with point size
shader.canvas_shader.initialize(variants, global_defines);
shader.default_version = shader.canvas_shader.version_create();
shader.default_version_rd_shader = shader.canvas_shader.version_get_shader(shader.default_version, SHADER_VARIANT_QUAD);
RD::PipelineColorBlendState blend_state;
RD::PipelineColorBlendState::Attachment blend_attachment;
blend_attachment.enable_blend = true;
blend_attachment.color_blend_op = RD::BLEND_OP_ADD;
blend_attachment.src_color_blend_factor = RD::BLEND_FACTOR_SRC_ALPHA;
blend_attachment.dst_color_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blend_attachment.alpha_blend_op = RD::BLEND_OP_ADD;
blend_attachment.src_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
blend_attachment.dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blend_state.attachments.push_back(blend_attachment);
for (int i = 0; i < PIPELINE_LIGHT_MODE_MAX; i++) {
for (int j = 0; j < PIPELINE_VARIANT_MAX; j++) {
RD::RenderPrimitive primitive[PIPELINE_VARIANT_MAX] = {
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_POINTS,
RD::RENDER_PRIMITIVE_TRIANGLES,
RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS,
RD::RENDER_PRIMITIVE_LINES,
RD::RENDER_PRIMITIVE_LINESTRIPS,
RD::RENDER_PRIMITIVE_POINTS,
};
ShaderVariant shader_variants[PIPELINE_LIGHT_MODE_MAX][PIPELINE_VARIANT_MAX] = {
{ //non lit
SHADER_VARIANT_QUAD,
SHADER_VARIANT_NINEPATCH,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE,
SHADER_VARIANT_PRIMITIVE_POINTS,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES,
SHADER_VARIANT_ATTRIBUTES_POINTS },
{ //lit
SHADER_VARIANT_QUAD_LIGHT,
SHADER_VARIANT_NINEPATCH_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_LIGHT,
SHADER_VARIANT_PRIMITIVE_POINTS_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_LIGHT,
SHADER_VARIANT_ATTRIBUTES_POINTS_LIGHT },
};
RID shader_variant = shader.canvas_shader.version_get_shader(shader.default_version, shader_variants[i][j]);
shader.pipeline_variants.variants[i][j].setup(shader_variant, primitive[j], RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), blend_state, 0);
}
}
}
{
//shader compiler
ShaderCompilerRD::DefaultIdentifierActions actions;
actions.renames["VERTEX"] = "vertex";
actions.renames["LIGHT_VERTEX"] = "light_vertex";
actions.renames["SHADOW_VERTEX"] = "shadow_vertex";
actions.renames["UV"] = "uv";
actions.renames["POINT_SIZE"] = "gl_PointSize";
actions.renames["WORLD_MATRIX"] = "world_matrix";
actions.renames["CANVAS_MATRIX"] = "canvas_data.canvas_transform";
actions.renames["SCREEN_MATRIX"] = "canvas_data.screen_transform";
actions.renames["TIME"] = "canvas_data.time";
actions.renames["AT_LIGHT_PASS"] = "false";
actions.renames["INSTANCE_CUSTOM"] = "instance_custom";
actions.renames["COLOR"] = "color";
actions.renames["NORMAL"] = "normal";
actions.renames["NORMAL_MAP"] = "normal_map";
actions.renames["NORMAL_MAP_DEPTH"] = "normal_map_depth";
actions.renames["TEXTURE"] = "color_texture";
actions.renames["TEXTURE_PIXEL_SIZE"] = "draw_data.color_texture_pixel_size";
actions.renames["NORMAL_TEXTURE"] = "normal_texture";
actions.renames["SPECULAR_SHININESS_TEXTURE"] = "specular_texture";
actions.renames["SPECULAR_SHININESS"] = "specular_shininess";
actions.renames["SCREEN_UV"] = "screen_uv";
actions.renames["SCREEN_TEXTURE"] = "screen_texture";
actions.renames["SCREEN_PIXEL_SIZE"] = "canvas_data.screen_pixel_size";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["POINT_COORD"] = "gl_PointCoord";
actions.renames["LIGHT_POSITION"] = "light_position";
actions.renames["LIGHT_COLOR"] = "light_color";
actions.renames["LIGHT_ENERGY"] = "light_energy";
actions.renames["LIGHT"] = "light";
actions.renames["SHADOW_MODULATE"] = "shadow_modulate";
actions.renames["texture_sdf"] = "texture_sdf";
actions.renames["texture_sdf_normal"] = "texture_sdf_normal";
actions.renames["sdf_to_screen_uv"] = "sdf_to_screen_uv";
actions.renames["screen_uv_to_sdf"] = "screen_uv_to_sdf";
actions.usage_defines["COLOR"] = "#define COLOR_USED\n";
actions.usage_defines["SCREEN_TEXTURE"] = "#define SCREEN_TEXTURE_USED\n";
actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n";
actions.usage_defines["SCREEN_PIXEL_SIZE"] = "@SCREEN_UV";
actions.usage_defines["NORMAL"] = "#define NORMAL_USED\n";
actions.usage_defines["NORMAL_MAP"] = "#define NORMAL_MAP_USED\n";
actions.usage_defines["LIGHT"] = "#define LIGHT_SHADER_CODE_USED\n";
actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
actions.render_mode_defines["light_only"] = "#define MODE_LIGHT_ONLY\n";
actions.custom_samplers["TEXTURE"] = "texture_sampler";
actions.custom_samplers["NORMAL_TEXTURE"] = "texture_sampler";
actions.custom_samplers["SPECULAR_SHININESS_TEXTURE"] = "texture_sampler";
actions.custom_samplers["SCREEN_TEXTURE"] = "material_samplers[3]"; //mipmap and filter for screen texture
actions.sampler_array_name = "material_samplers";
actions.base_texture_binding_index = 1;
actions.texture_layout_set = MATERIAL_UNIFORM_SET;
actions.base_uniform_string = "material.";
actions.default_filter = ShaderLanguage::FILTER_LINEAR;
actions.default_repeat = ShaderLanguage::REPEAT_DISABLE;
actions.base_varying_index = 4;
actions.global_buffer_array_variable = "global_variables.data";
shader.compiler.initialize(actions);
}
{ //shadow rendering
Vector<String> versions;
versions.push_back("\n#define MODE_SHADOW\n"); //shadow
versions.push_back("\n#define MODE_SDF\n"); //sdf
shadow_render.shader.initialize(versions);
{
Vector<RD::AttachmentFormat> attachments;
RD::AttachmentFormat af_color;
af_color.format = RD::DATA_FORMAT_R32_SFLOAT;
af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
attachments.push_back(af_color);
RD::AttachmentFormat af_depth;
af_depth.format = RD::DATA_FORMAT_D32_SFLOAT;
af_depth.usage_flags = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
attachments.push_back(af_depth);
shadow_render.framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments);
}
{
Vector<RD::AttachmentFormat> attachments;
RD::AttachmentFormat af_color;
af_color.format = RD::DATA_FORMAT_R8_UNORM;
af_color.usage_flags = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
attachments.push_back(af_color);
shadow_render.sdf_framebuffer_format = RD::get_singleton()->framebuffer_format_create(attachments);
}
//pipelines
Vector<RD::VertexAttribute> vf;
RD::VertexAttribute vd;
vd.format = sizeof(real_t) == sizeof(float) ? RD::DATA_FORMAT_R32G32B32_SFLOAT : RD::DATA_FORMAT_R64G64B64_SFLOAT;
vd.location = 0;
vd.offset = 0;
vd.stride = sizeof(real_t) * 3;
vf.push_back(vd);
shadow_render.vertex_format = RD::get_singleton()->vertex_format_create(vf);
vd.format = sizeof(real_t) == sizeof(float) ? RD::DATA_FORMAT_R32G32_SFLOAT : RD::DATA_FORMAT_R64G64_SFLOAT;
vd.stride = sizeof(real_t) * 2;
vf.write[0] = vd;
shadow_render.sdf_vertex_format = RD::get_singleton()->vertex_format_create(vf);
shadow_render.shader_version = shadow_render.shader.version_create();
for (int i = 0; i < 3; i++) {
RD::PipelineRasterizationState rs;
rs.cull_mode = i == 0 ? RD::POLYGON_CULL_DISABLED : (i == 1 ? RD::POLYGON_CULL_FRONT : RD::POLYGON_CULL_BACK);
RD::PipelineDepthStencilState ds;
ds.enable_depth_write = true;
ds.enable_depth_test = true;
ds.depth_compare_operator = RD::COMPARE_OP_LESS;
shadow_render.render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, SHADOW_RENDER_MODE_SHADOW), shadow_render.framebuffer_format, shadow_render.vertex_format, RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
}
for (int i = 0; i < 2; i++) {
shadow_render.sdf_render_pipelines[i] = RD::get_singleton()->render_pipeline_create(shadow_render.shader.version_get_shader(shadow_render.shader_version, SHADOW_RENDER_MODE_SDF), shadow_render.sdf_framebuffer_format, shadow_render.sdf_vertex_format, i == 0 ? RD::RENDER_PRIMITIVE_TRIANGLES : RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0);
}
}
{ //bindings
state.canvas_state_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(State::Buffer));
state.lights_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(LightUniform) * state.max_lights_per_render);
RD::SamplerState shadow_sampler_state;
shadow_sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR;
shadow_sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR;
shadow_sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; //shadow wrap around
shadow_sampler_state.compare_op = RD::COMPARE_OP_GREATER;
shadow_sampler_state.enable_compare = true;
state.shadow_sampler = RD::get_singleton()->sampler_create(shadow_sampler_state);
}
{
//polygon buffers
polygon_buffers.last_id = 1;
}
{ // default index buffer
Vector<uint8_t> pv;
pv.resize(6 * 4);
{
uint8_t *w = pv.ptrw();
int *p32 = (int *)w;
p32[0] = 0;
p32[1] = 1;
p32[2] = 2;
p32[3] = 0;
p32[4] = 2;
p32[5] = 3;
}
shader.quad_index_buffer = RD::get_singleton()->index_buffer_create(6, RenderingDevice::INDEX_BUFFER_FORMAT_UINT32, pv);
shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6);
}
{ //primitive
primitive_arrays.index_array[0] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 1);
primitive_arrays.index_array[1] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 2);
primitive_arrays.index_array[2] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 3);
primitive_arrays.index_array[3] = shader.quad_index_array = RD::get_singleton()->index_array_create(shader.quad_index_buffer, 0, 6);
}
{ //default skeleton buffer
shader.default_skeleton_uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkeletonUniform));
SkeletonUniform su;
_update_transform_2d_to_mat4(Transform2D(), su.skeleton_inverse);
_update_transform_2d_to_mat4(Transform2D(), su.skeleton_transform);
RD::get_singleton()->buffer_update(shader.default_skeleton_uniform_buffer, 0, sizeof(SkeletonUniform), &su);
shader.default_skeleton_texture_buffer = RD::get_singleton()->texture_buffer_create(32, RD::DATA_FORMAT_R32G32B32A32_SFLOAT);
}
{
//default shadow texture to keep uniform set happy
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = 4;
tf.height = 4;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(storage->get_default_rd_storage_buffer());
uniforms.push_back(u);
}
state.default_transforms_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, shader.default_version_rd_shader, TRANSFORMS_UNIFORM_SET);
}
default_canvas_texture = storage->canvas_texture_create();
state.shadow_texture_size = GLOBAL_GET("rendering/quality/2d_shadow_atlas/size");
//create functions for shader and material
storage->shader_set_data_request_function(RendererStorageRD::SHADER_TYPE_2D, _create_shader_funcs);
storage->material_set_data_request_function(RendererStorageRD::SHADER_TYPE_2D, _create_material_funcs);
state.time = 0;
{
default_canvas_group_shader = storage->shader_create();
storage->shader_set_code(default_canvas_group_shader, "shader_type canvas_item; \nvoid fragment() {\n\tvec4 c = textureLod(SCREEN_TEXTURE,SCREEN_UV,0.0); if (c.a > 0.0001) c.rgb/=c.a; COLOR *= c; \n}\n");
default_canvas_group_material = storage->material_create();
storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader);
}
static_assert(sizeof(PushConstant) == 128);
}
bool RendererCanvasRenderRD::free(RID p_rid) {
if (canvas_light_owner.owns(p_rid)) {
CanvasLight *cl = canvas_light_owner.getornull(p_rid);
ERR_FAIL_COND_V(!cl, false);
light_set_use_shadow(p_rid, false);
canvas_light_owner.free(p_rid);
} else if (occluder_polygon_owner.owns(p_rid)) {
occluder_polygon_set_shape(p_rid, Vector<Vector2>(), false);
occluder_polygon_owner.free(p_rid);
} else {
return false;
}
return true;
}
void RendererCanvasRenderRD::set_shadow_texture_size(int p_size) {
p_size = nearest_power_of_2_templated(p_size);
if (p_size == state.shadow_texture_size) {
return;
}
state.shadow_texture_size = p_size;
if (state.shadow_fb.is_valid()) {
RD::get_singleton()->free(state.shadow_texture);
RD::get_singleton()->free(state.shadow_depth_texture);
state.shadow_fb = RID();
{
//create a default shadow texture to keep uniform set happy (and that it gets erased when a new one is created)
RD::TextureFormat tf;
tf.texture_type = RD::TEXTURE_TYPE_2D;
tf.width = 4;
tf.height = 4;
tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
state.shadow_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
}
}
}
RendererCanvasRenderRD::~RendererCanvasRenderRD() {
//canvas state
storage->free(default_canvas_group_material);
storage->free(default_canvas_group_shader);
{
if (state.canvas_state_buffer.is_valid()) {
RD::get_singleton()->free(state.canvas_state_buffer);
}
memdelete_arr(state.light_uniforms);
RD::get_singleton()->free(state.lights_uniform_buffer);
RD::get_singleton()->free(shader.default_skeleton_uniform_buffer);
RD::get_singleton()->free(shader.default_skeleton_texture_buffer);
}
//shadow rendering
{
shadow_render.shader.version_free(shadow_render.shader_version);
//this will also automatically clear all pipelines
RD::get_singleton()->free(state.shadow_sampler);
}
//bindings
//shaders
shader.canvas_shader.version_free(shader.default_version);
//buffers
{
RD::get_singleton()->free(shader.quad_index_array);
RD::get_singleton()->free(shader.quad_index_buffer);
//primitives are erase by dependency
}
if (state.shadow_fb.is_valid()) {
RD::get_singleton()->free(state.shadow_depth_texture);
}
RD::get_singleton()->free(state.shadow_texture);
storage->free(default_canvas_texture);
//pipelines don't need freeing, they are all gone after shaders are gone
}