mirror of
https://github.com/godotengine/godot.git
synced 2024-12-15 10:12:40 +08:00
18e9133d5a
Add and expose Basis/Transform2D/3D division by float operator
320 lines
15 KiB
XML
320 lines
15 KiB
XML
<?xml version="1.0" encoding="UTF-8" ?>
|
||
<class name="Transform2D" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
|
||
<brief_description>
|
||
A 2×3 matrix representing a 2D transformation.
|
||
</brief_description>
|
||
<description>
|
||
A 2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, and scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
|
||
For a general introduction, see the [url=$DOCS_URL/tutorials/math/matrices_and_transforms.html]Matrices and transforms[/url] tutorial.
|
||
</description>
|
||
<tutorials>
|
||
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
|
||
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
|
||
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
|
||
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
|
||
</tutorials>
|
||
<constructors>
|
||
<constructor name="Transform2D">
|
||
<return type="Transform2D" />
|
||
<description>
|
||
Constructs a default-initialized [Transform2D] set to [constant IDENTITY].
|
||
</description>
|
||
</constructor>
|
||
<constructor name="Transform2D">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="from" type="Transform2D" />
|
||
<description>
|
||
Constructs a [Transform2D] as a copy of the given [Transform2D].
|
||
</description>
|
||
</constructor>
|
||
<constructor name="Transform2D">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="rotation" type="float" />
|
||
<param index="1" name="position" type="Vector2" />
|
||
<description>
|
||
Constructs the transform from a given angle (in radians) and position.
|
||
</description>
|
||
</constructor>
|
||
<constructor name="Transform2D">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="rotation" type="float" />
|
||
<param index="1" name="scale" type="Vector2" />
|
||
<param index="2" name="skew" type="float" />
|
||
<param index="3" name="position" type="Vector2" />
|
||
<description>
|
||
Constructs the transform from a given angle (in radians), scale, skew (in radians) and position.
|
||
</description>
|
||
</constructor>
|
||
<constructor name="Transform2D">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="x_axis" type="Vector2" />
|
||
<param index="1" name="y_axis" type="Vector2" />
|
||
<param index="2" name="origin" type="Vector2" />
|
||
<description>
|
||
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
|
||
</description>
|
||
</constructor>
|
||
</constructors>
|
||
<methods>
|
||
<method name="affine_inverse" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<description>
|
||
Returns the inverse of the transform, under the assumption that the basis is invertible (must have non-zero determinant).
|
||
</description>
|
||
</method>
|
||
<method name="basis_xform" qualifiers="const">
|
||
<return type="Vector2" />
|
||
<param index="0" name="v" type="Vector2" />
|
||
<description>
|
||
Returns a vector transformed (multiplied) by the basis matrix.
|
||
This method does not account for translation (the [member origin] vector).
|
||
</description>
|
||
</method>
|
||
<method name="basis_xform_inv" qualifiers="const">
|
||
<return type="Vector2" />
|
||
<param index="0" name="v" type="Vector2" />
|
||
<description>
|
||
Returns a vector transformed (multiplied) by the inverse basis matrix, under the assumption that the basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
|
||
This method does not account for translation (the [member origin] vector).
|
||
[code]transform.basis_xform_inv(vector)[/code] is equivalent to [code]transform.inverse().basis_xform(vector)[/code]. See [method inverse].
|
||
For non-orthonormal transforms (e.g. with scaling) [code]transform.affine_inverse().basis_xform(vector)[/code] can be used instead. See [method affine_inverse].
|
||
</description>
|
||
</method>
|
||
<method name="determinant" qualifiers="const">
|
||
<return type="float" />
|
||
<description>
|
||
Returns the determinant of the basis matrix. If the basis is uniformly scaled, then its determinant equals the square of the scale factor.
|
||
A negative determinant means the basis was flipped, so one part of the scale is negative. A zero determinant means the basis isn't invertible, and is usually considered invalid.
|
||
</description>
|
||
</method>
|
||
<method name="get_origin" qualifiers="const">
|
||
<return type="Vector2" />
|
||
<description>
|
||
Returns the transform's origin (translation).
|
||
</description>
|
||
</method>
|
||
<method name="get_rotation" qualifiers="const">
|
||
<return type="float" />
|
||
<description>
|
||
Returns the transform's rotation (in radians).
|
||
</description>
|
||
</method>
|
||
<method name="get_scale" qualifiers="const">
|
||
<return type="Vector2" />
|
||
<description>
|
||
Returns the scale.
|
||
</description>
|
||
</method>
|
||
<method name="get_skew" qualifiers="const">
|
||
<return type="float" />
|
||
<description>
|
||
Returns the transform's skew (in radians).
|
||
</description>
|
||
</method>
|
||
<method name="interpolate_with" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="xform" type="Transform2D" />
|
||
<param index="1" name="weight" type="float" />
|
||
<description>
|
||
Returns a transform interpolated between this transform and another by a given [param weight] (on the range of 0.0 to 1.0).
|
||
</description>
|
||
</method>
|
||
<method name="inverse" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<description>
|
||
Returns the inverse of the transform, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not). Use [method affine_inverse] for non-orthonormal transforms (e.g. with scaling).
|
||
</description>
|
||
</method>
|
||
<method name="is_conformal" qualifiers="const">
|
||
<return type="bool" />
|
||
<description>
|
||
Returns [code]true[/code] if the transform's basis is conformal, meaning it preserves angles and distance ratios, and may only be composed of rotation and uniform scale. Returns [code]false[/code] if the transform's basis has non-uniform scale or shear/skew. This can be used to validate if the transform is non-distorted, which is important for physics and other use cases.
|
||
</description>
|
||
</method>
|
||
<method name="is_equal_approx" qualifiers="const">
|
||
<return type="bool" />
|
||
<param index="0" name="xform" type="Transform2D" />
|
||
<description>
|
||
Returns [code]true[/code] if this transform and [param xform] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
|
||
</description>
|
||
</method>
|
||
<method name="is_finite" qualifiers="const">
|
||
<return type="bool" />
|
||
<description>
|
||
Returns [code]true[/code] if this transform is finite, by calling [method @GlobalScope.is_finite] on each component.
|
||
</description>
|
||
</method>
|
||
<method name="looking_at" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="target" type="Vector2" default="Vector2(0, 0)" />
|
||
<description>
|
||
Returns a copy of the transform rotated such that the rotated X-axis points towards the [param target] position.
|
||
Operations take place in global space.
|
||
</description>
|
||
</method>
|
||
<method name="orthonormalized" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<description>
|
||
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
|
||
</description>
|
||
</method>
|
||
<method name="rotated" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="angle" type="float" />
|
||
<description>
|
||
Returns a copy of the transform rotated by the given [param angle] (in radians).
|
||
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
|
||
This can be seen as transforming with respect to the global/parent frame.
|
||
</description>
|
||
</method>
|
||
<method name="rotated_local" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="angle" type="float" />
|
||
<description>
|
||
Returns a copy of the transform rotated by the given [param angle] (in radians).
|
||
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
|
||
This can be seen as transforming with respect to the local frame.
|
||
</description>
|
||
</method>
|
||
<method name="scaled" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="scale" type="Vector2" />
|
||
<description>
|
||
Returns a copy of the transform scaled by the given [param scale] factor.
|
||
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
|
||
This can be seen as transforming with respect to the global/parent frame.
|
||
</description>
|
||
</method>
|
||
<method name="scaled_local" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="scale" type="Vector2" />
|
||
<description>
|
||
Returns a copy of the transform scaled by the given [param scale] factor.
|
||
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
|
||
This can be seen as transforming with respect to the local frame.
|
||
</description>
|
||
</method>
|
||
<method name="translated" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="offset" type="Vector2" />
|
||
<description>
|
||
Returns a copy of the transform translated by the given [param offset].
|
||
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
|
||
This can be seen as transforming with respect to the global/parent frame.
|
||
</description>
|
||
</method>
|
||
<method name="translated_local" qualifiers="const">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="offset" type="Vector2" />
|
||
<description>
|
||
Returns a copy of the transform translated by the given [param offset].
|
||
This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
|
||
This can be seen as transforming with respect to the local frame.
|
||
</description>
|
||
</method>
|
||
</methods>
|
||
<members>
|
||
<member name="origin" type="Vector2" setter="" getter="" default="Vector2(0, 0)">
|
||
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
|
||
</member>
|
||
<member name="x" type="Vector2" setter="" getter="" default="Vector2(1, 0)">
|
||
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
|
||
</member>
|
||
<member name="y" type="Vector2" setter="" getter="" default="Vector2(0, 1)">
|
||
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
|
||
</member>
|
||
</members>
|
||
<constants>
|
||
<constant name="IDENTITY" value="Transform2D(1, 0, 0, 1, 0, 0)">
|
||
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
|
||
</constant>
|
||
<constant name="FLIP_X" value="Transform2D(-1, 0, 0, 1, 0, 0)">
|
||
The [Transform2D] that will flip something along the X axis.
|
||
</constant>
|
||
<constant name="FLIP_Y" value="Transform2D(1, 0, 0, -1, 0, 0)">
|
||
The [Transform2D] that will flip something along the Y axis.
|
||
</constant>
|
||
</constants>
|
||
<operators>
|
||
<operator name="operator !=">
|
||
<return type="bool" />
|
||
<param index="0" name="right" type="Transform2D" />
|
||
<description>
|
||
Returns [code]true[/code] if the transforms are not equal.
|
||
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator *">
|
||
<return type="PackedVector2Array" />
|
||
<param index="0" name="right" type="PackedVector2Array" />
|
||
<description>
|
||
Transforms (multiplies) each element of the [Vector2] array by the given [Transform2D] matrix.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator *">
|
||
<return type="Rect2" />
|
||
<param index="0" name="right" type="Rect2" />
|
||
<description>
|
||
Transforms (multiplies) the [Rect2] by the given [Transform2D] matrix.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator *">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="right" type="Transform2D" />
|
||
<description>
|
||
Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent).
|
||
</description>
|
||
</operator>
|
||
<operator name="operator *">
|
||
<return type="Vector2" />
|
||
<param index="0" name="right" type="Vector2" />
|
||
<description>
|
||
Transforms (multiplies) the [Vector2] by the given [Transform2D] matrix.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator *">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="right" type="float" />
|
||
<description>
|
||
This operator multiplies all components of the [Transform2D], including the [member origin] vector, which scales it uniformly.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator *">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="right" type="int" />
|
||
<description>
|
||
This operator multiplies all components of the [Transform2D], including the [member origin] vector, which scales it uniformly.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator /">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="right" type="float" />
|
||
<description>
|
||
This operator divides all components of the [Transform2D], including the [member origin] vector, which inversely scales it uniformly.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator /">
|
||
<return type="Transform2D" />
|
||
<param index="0" name="right" type="int" />
|
||
<description>
|
||
This operator divides all components of the [Transform2D], including the [member origin] vector, which inversely scales it uniformly.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator ==">
|
||
<return type="bool" />
|
||
<param index="0" name="right" type="Transform2D" />
|
||
<description>
|
||
Returns [code]true[/code] if the transforms are exactly equal.
|
||
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
|
||
</description>
|
||
</operator>
|
||
<operator name="operator []">
|
||
<return type="Vector2" />
|
||
<param index="0" name="index" type="int" />
|
||
<description>
|
||
Access transform components using their index. [code]t[0][/code] is equivalent to [code]t.x[/code], [code]t[1][/code] is equivalent to [code]t.y[/code], and [code]t[2][/code] is equivalent to [code]t.origin[/code].
|
||
</description>
|
||
</operator>
|
||
</operators>
|
||
</class>
|