godot/scene/resources/animation.h
2022-08-09 09:18:45 +09:00

491 lines
20 KiB
C++

/*************************************************************************/
/* animation.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef ANIMATION_H
#define ANIMATION_H
#include "core/io/resource.h"
#include "core/templates/local_vector.h"
#define ANIM_MIN_LENGTH 0.001
class Animation : public Resource {
GDCLASS(Animation, Resource);
RES_BASE_EXTENSION("anim");
public:
enum TrackType {
TYPE_VALUE, ///< Set a value in a property, can be interpolated.
TYPE_POSITION_3D, ///< Position 3D track
TYPE_ROTATION_3D, ///< Rotation 3D track
TYPE_SCALE_3D, ///< Scale 3D track
TYPE_BLEND_SHAPE, ///< Blend Shape track
TYPE_METHOD, ///< Call any method on a specific node.
TYPE_BEZIER, ///< Bezier curve
TYPE_AUDIO,
TYPE_ANIMATION,
};
enum InterpolationType {
INTERPOLATION_NEAREST,
INTERPOLATION_LINEAR,
INTERPOLATION_CUBIC
};
enum UpdateMode {
UPDATE_CONTINUOUS,
UPDATE_DISCRETE,
UPDATE_TRIGGER,
UPDATE_CAPTURE,
};
enum LoopMode {
LOOP_NONE,
LOOP_LINEAR,
LOOP_PINGPONG,
};
enum HandleMode {
HANDLE_MODE_FREE,
HANDLE_MODE_BALANCED,
};
private:
struct Track {
TrackType type = TrackType::TYPE_ANIMATION;
InterpolationType interpolation = INTERPOLATION_LINEAR;
bool loop_wrap = true;
NodePath path; // path to something
bool imported = false;
bool enabled = true;
Track() {}
virtual ~Track() {}
};
struct Key {
real_t transition = 1.0;
double time = 0.0; // time in secs
};
// transform key holds either Vector3 or Quaternion
template <class T>
struct TKey : public Key {
T value;
};
const int32_t POSITION_TRACK_SIZE = 5;
const int32_t ROTATION_TRACK_SIZE = 6;
const int32_t SCALE_TRACK_SIZE = 5;
const int32_t BLEND_SHAPE_TRACK_SIZE = 3;
/* POSITION TRACK */
struct PositionTrack : public Track {
Vector<TKey<Vector3>> positions;
int32_t compressed_track = -1;
PositionTrack() { type = TYPE_POSITION_3D; }
};
/* ROTATION TRACK */
struct RotationTrack : public Track {
Vector<TKey<Quaternion>> rotations;
int32_t compressed_track = -1;
RotationTrack() { type = TYPE_ROTATION_3D; }
};
/* SCALE TRACK */
struct ScaleTrack : public Track {
Vector<TKey<Vector3>> scales;
int32_t compressed_track = -1;
ScaleTrack() { type = TYPE_SCALE_3D; }
};
/* BLEND SHAPE TRACK */
struct BlendShapeTrack : public Track {
Vector<TKey<float>> blend_shapes;
int32_t compressed_track = -1;
BlendShapeTrack() { type = TYPE_BLEND_SHAPE; }
};
/* PROPERTY VALUE TRACK */
struct ValueTrack : public Track {
UpdateMode update_mode = UPDATE_CONTINUOUS;
bool update_on_seek = false;
Vector<TKey<Variant>> values;
ValueTrack() {
type = TYPE_VALUE;
}
};
/* METHOD TRACK */
struct MethodKey : public Key {
StringName method;
Vector<Variant> params;
};
struct MethodTrack : public Track {
Vector<MethodKey> methods;
MethodTrack() { type = TYPE_METHOD; }
};
/* BEZIER TRACK */
struct BezierKey {
Vector2 in_handle; //relative (x always <0)
Vector2 out_handle; //relative (x always >0)
HandleMode handle_mode = HANDLE_MODE_BALANCED;
real_t value = 0.0;
};
struct BezierTrack : public Track {
Vector<TKey<BezierKey>> values;
BezierTrack() {
type = TYPE_BEZIER;
}
};
/* AUDIO TRACK */
struct AudioKey {
Ref<Resource> stream;
real_t start_offset = 0.0; //offset from start
real_t end_offset = 0.0; //offset from end, if 0 then full length or infinite
AudioKey() {
}
};
struct AudioTrack : public Track {
Vector<TKey<AudioKey>> values;
AudioTrack() {
type = TYPE_AUDIO;
}
};
/* AUDIO TRACK */
struct AnimationTrack : public Track {
Vector<TKey<StringName>> values;
AnimationTrack() {
type = TYPE_ANIMATION;
}
};
Vector<Track *> tracks;
/*
template<class T>
int _insert_pos(double p_time, T& p_keys);*/
template <class T>
void _clear(T &p_keys);
template <class T, class V>
int _insert(double p_time, T &p_keys, const V &p_value);
template <class K>
inline int _find(const Vector<K> &p_keys, double p_time, bool p_backward = false) const;
_FORCE_INLINE_ Vector3 _interpolate(const Vector3 &p_a, const Vector3 &p_b, real_t p_c) const;
_FORCE_INLINE_ Quaternion _interpolate(const Quaternion &p_a, const Quaternion &p_b, real_t p_c) const;
_FORCE_INLINE_ Variant _interpolate(const Variant &p_a, const Variant &p_b, real_t p_c) const;
_FORCE_INLINE_ real_t _interpolate(const real_t &p_a, const real_t &p_b, real_t p_c) const;
_FORCE_INLINE_ Vector3 _cubic_interpolate(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, real_t p_c) const;
_FORCE_INLINE_ Quaternion _cubic_interpolate(const Quaternion &p_pre_a, const Quaternion &p_a, const Quaternion &p_b, const Quaternion &p_post_b, real_t p_c) const;
_FORCE_INLINE_ Variant _cubic_interpolate(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c) const;
_FORCE_INLINE_ real_t _cubic_interpolate(const real_t &p_pre_a, const real_t &p_a, const real_t &p_b, const real_t &p_post_b, real_t p_c) const;
template <class T>
_FORCE_INLINE_ T _interpolate(const Vector<TKey<T>> &p_keys, double p_time, InterpolationType p_interp, bool p_loop_wrap, bool *p_ok, bool p_backward = false) const;
template <class T>
_FORCE_INLINE_ void _track_get_key_indices_in_range(const Vector<T> &p_array, double from_time, double to_time, List<int> *p_indices) const;
_FORCE_INLINE_ void _value_track_get_key_indices_in_range(const ValueTrack *vt, double from_time, double to_time, List<int> *p_indices) const;
_FORCE_INLINE_ void _method_track_get_key_indices_in_range(const MethodTrack *mt, double from_time, double to_time, List<int> *p_indices) const;
double length = 1.0;
real_t step = 0.1;
LoopMode loop_mode = LOOP_NONE;
int pingponged = 0;
/* Animation compression page format (version 1):
*
* Animation uses bitwidth based compression separated into small pages. The intention is that pages fit easily in the cache, so decoding is cache efficient.
* The page-based nature also makes future animation streaming from disk possible.
*
* Actual format:
*
* num_compressed_tracks = bounds.size()
* header : (x num_compressed_tracks)
* -------
* timeline_keys_offset : uint32_t - offset to time keys
* timeline_size : uint32_t - amount of time keys
* data_keys_offset : uint32_t offset to key data
*
* time key (uint32_t):
* ------------------
* frame : bits 0-15 - time offset of key, computed as: page.time_offset + frame * (1.0/fps)
* data_key_offset : bits 16-27 - offset to key data, computed as: data_keys_offset * 4 + data_key_offset
* data_key_count : bits 28-31 - amount of data keys pointed to, computed as: data_key_count+1 (max 16)
*
* data key:
* ---------
* X / Blend Shape : uint16_t - X coordinate of XYZ vector key, or Blend Shape value. If Blend shape, Y and Z are not present and can be ignored.
* Y : uint16_t
* Z : uint16_t
* If data_key_count+1 > 1 (if more than 1 key is stored):
* data_bitwidth : uint16_t - This is only present if data_key_count > 1. Contains delta bitwidth information.
* X / Blend Shape delta bitwidth: bits 0-3 -
* if 0, nothing is present for X (use the first key-value for subsequent keys),
* else assume the number of bits present for each element (+ 1 for sign). Assumed always 16 bits, delta max signed 15 bits, with underflow and overflow supported.
* Y delta bitwidth : bits 4-7
* Z delta bitwidth : bits 8-11
* FRAME delta bitwidth : 12-15 bits - always present (obviously), actual bitwidth is FRAME+1
* Data key is 4 bytes long for Blend Shapes, 8 bytes long for pos/rot/scale.
*
* delta keys:
* -----------
* Compressed format is packed in the following format after the data key, containing delta keys one after the next in a tightly bit packed fashion.
* FRAME bits -> X / Blend Shape Bits (if bitwidth > 0) -> Y Bits (if not Blend Shape and Y Bitwidth > 0) -> Z Bits (if not Blend Shape and Z Bitwidth > 0)
*
* data key format:
* ----------------
* Decoding keys means starting from the base key and going key by key applying deltas until the proper position is reached needed for interpolation.
* Resulting values are uint32_t
* data for X / Blend Shape, Y and Z must be normalized first: unorm = float(data) / 65535.0
* **Blend Shape**: (unorm * 2.0 - 1.0) * Compression::BLEND_SHAPE_RANGE
* **Pos/Scale**: unorm_vec3 * bounds[track].size + bounds[track].position
* **Rotation**: Quaternion(Vector3::octahedron_decode(unorm_vec3.xy),unorm_vec3.z * Math_PI * 2.0)
* **Frame**: page.time_offset + frame * (1.0/fps)
*/
struct Compression {
enum {
MAX_DATA_TRACK_SIZE = 16384,
BLEND_SHAPE_RANGE = 8, // - 8.0 to 8.0
FORMAT_VERSION = 1
};
struct Page {
Vector<uint8_t> data;
double time_offset;
};
uint32_t fps = 120;
LocalVector<Page> pages;
LocalVector<AABB> bounds; //used by position and scale tracks (which contain index to track and index to bounds).
bool enabled = false;
} compression;
Vector3i _compress_key(uint32_t p_track, const AABB &p_bounds, int32_t p_key = -1, float p_time = 0.0);
bool _rotation_interpolate_compressed(uint32_t p_compressed_track, double p_time, Quaternion &r_ret) const;
bool _pos_scale_interpolate_compressed(uint32_t p_compressed_track, double p_time, Vector3 &r_ret) const;
bool _blend_shape_interpolate_compressed(uint32_t p_compressed_track, double p_time, float &r_ret) const;
template <uint32_t COMPONENTS>
bool _fetch_compressed(uint32_t p_compressed_track, double p_time, Vector3i &r_current_value, double &r_current_time, Vector3i &r_next_value, double &r_next_time, uint32_t *key_index = nullptr) const;
template <uint32_t COMPONENTS>
bool _fetch_compressed_by_index(uint32_t p_compressed_track, int p_index, Vector3i &r_value, double &r_time) const;
int _get_compressed_key_count(uint32_t p_compressed_track) const;
template <uint32_t COMPONENTS>
void _get_compressed_key_indices_in_range(uint32_t p_compressed_track, double p_time, double p_delta, List<int> *r_indices) const;
_FORCE_INLINE_ Quaternion _uncompress_quaternion(const Vector3i &p_value) const;
_FORCE_INLINE_ Vector3 _uncompress_pos_scale(uint32_t p_compressed_track, const Vector3i &p_value) const;
_FORCE_INLINE_ float _uncompress_blend_shape(const Vector3i &p_value) const;
// bind helpers
private:
Vector<int> _value_track_get_key_indices(int p_track, double p_time, double p_delta) const {
List<int> idxs;
value_track_get_key_indices(p_track, p_time, p_delta, &idxs);
Vector<int> idxr;
for (int &E : idxs) {
idxr.push_back(E);
}
return idxr;
}
Vector<int> _method_track_get_key_indices(int p_track, double p_time, double p_delta) const {
List<int> idxs;
method_track_get_key_indices(p_track, p_time, p_delta, &idxs);
Vector<int> idxr;
for (int &E : idxs) {
idxr.push_back(E);
}
return idxr;
}
bool _vector3_track_optimize_key(const TKey<Vector3> t0, const TKey<Vector3> t1, const TKey<Vector3> t2, real_t p_alowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error);
bool _quaternion_track_optimize_key(const TKey<Quaternion> t0, const TKey<Quaternion> t1, const TKey<Quaternion> t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error);
bool _float_track_optimize_key(const TKey<float> t0, const TKey<float> t1, const TKey<float> t2, real_t p_allowed_velocity_err, real_t p_allowed_precision_error);
void _position_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error);
void _rotation_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error);
void _scale_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error);
void _blend_shape_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_precision_error);
protected:
bool _set(const StringName &p_name, const Variant &p_value);
bool _get(const StringName &p_name, Variant &r_ret) const;
void _get_property_list(List<PropertyInfo> *p_list) const;
virtual void reset_state() override;
static void _bind_methods();
public:
int add_track(TrackType p_type, int p_at_pos = -1);
void remove_track(int p_track);
int get_track_count() const;
TrackType track_get_type(int p_track) const;
void track_set_path(int p_track, const NodePath &p_path);
NodePath track_get_path(int p_track) const;
int find_track(const NodePath &p_path, const TrackType p_type) const;
void track_move_up(int p_track);
void track_move_down(int p_track);
void track_move_to(int p_track, int p_to_index);
void track_swap(int p_track, int p_with_track);
void track_set_imported(int p_track, bool p_imported);
bool track_is_imported(int p_track) const;
void track_set_enabled(int p_track, bool p_enabled);
bool track_is_enabled(int p_track) const;
int track_insert_key(int p_track, double p_time, const Variant &p_key, real_t p_transition = 1);
void track_set_key_transition(int p_track, int p_key_idx, real_t p_transition);
void track_set_key_value(int p_track, int p_key_idx, const Variant &p_value);
void track_set_key_time(int p_track, int p_key_idx, double p_time);
int track_find_key(int p_track, double p_time, bool p_exact = false) const;
void track_remove_key(int p_track, int p_idx);
void track_remove_key_at_time(int p_track, double p_time);
int track_get_key_count(int p_track) const;
Variant track_get_key_value(int p_track, int p_key_idx) const;
double track_get_key_time(int p_track, int p_key_idx) const;
real_t track_get_key_transition(int p_track, int p_key_idx) const;
bool track_is_compressed(int p_track) const;
int position_track_insert_key(int p_track, double p_time, const Vector3 &p_position);
Error position_track_get_key(int p_track, int p_key, Vector3 *r_position) const;
Error position_track_interpolate(int p_track, double p_time, Vector3 *r_interpolation) const;
int rotation_track_insert_key(int p_track, double p_time, const Quaternion &p_rotation);
Error rotation_track_get_key(int p_track, int p_key, Quaternion *r_rotation) const;
Error rotation_track_interpolate(int p_track, double p_time, Quaternion *r_interpolation) const;
int scale_track_insert_key(int p_track, double p_time, const Vector3 &p_scale);
Error scale_track_get_key(int p_track, int p_key, Vector3 *r_scale) const;
Error scale_track_interpolate(int p_track, double p_time, Vector3 *r_interpolation) const;
int blend_shape_track_insert_key(int p_track, double p_time, float p_blend);
Error blend_shape_track_get_key(int p_track, int p_key, float *r_blend) const;
Error blend_shape_track_interpolate(int p_track, double p_time, float *r_blend) const;
void track_set_interpolation_type(int p_track, InterpolationType p_interp);
InterpolationType track_get_interpolation_type(int p_track) const;
int bezier_track_insert_key(int p_track, double p_time, real_t p_value, const Vector2 &p_in_handle, const Vector2 &p_out_handle, const HandleMode p_handle_mode = HandleMode::HANDLE_MODE_BALANCED);
void bezier_track_set_key_handle_mode(int p_track, int p_index, HandleMode p_mode, double p_balanced_value_time_ratio = 1.0);
void bezier_track_set_key_value(int p_track, int p_index, real_t p_value);
void bezier_track_set_key_in_handle(int p_track, int p_index, const Vector2 &p_handle, double p_balanced_value_time_ratio = 1.0);
void bezier_track_set_key_out_handle(int p_track, int p_index, const Vector2 &p_handle, double p_balanced_value_time_ratio = 1.0);
real_t bezier_track_get_key_value(int p_track, int p_index) const;
int bezier_track_get_key_handle_mode(int p_track, int p_index) const;
Vector2 bezier_track_get_key_in_handle(int p_track, int p_index) const;
Vector2 bezier_track_get_key_out_handle(int p_track, int p_index) const;
real_t bezier_track_interpolate(int p_track, double p_time) const;
int audio_track_insert_key(int p_track, double p_time, const Ref<Resource> &p_stream, real_t p_start_offset = 0, real_t p_end_offset = 0);
void audio_track_set_key_stream(int p_track, int p_key, const Ref<Resource> &p_stream);
void audio_track_set_key_start_offset(int p_track, int p_key, real_t p_offset);
void audio_track_set_key_end_offset(int p_track, int p_key, real_t p_offset);
Ref<Resource> audio_track_get_key_stream(int p_track, int p_key) const;
real_t audio_track_get_key_start_offset(int p_track, int p_key) const;
real_t audio_track_get_key_end_offset(int p_track, int p_key) const;
int animation_track_insert_key(int p_track, double p_time, const StringName &p_animation);
void animation_track_set_key_animation(int p_track, int p_key, const StringName &p_animation);
StringName animation_track_get_key_animation(int p_track, int p_key) const;
void track_set_interpolation_loop_wrap(int p_track, bool p_enable);
bool track_get_interpolation_loop_wrap(int p_track) const;
Variant value_track_interpolate(int p_track, double p_time) const;
void value_track_get_key_indices(int p_track, double p_time, double p_delta, List<int> *p_indices, int p_pingponged = 0) const;
void value_track_set_update_mode(int p_track, UpdateMode p_mode);
UpdateMode value_track_get_update_mode(int p_track) const;
void method_track_get_key_indices(int p_track, double p_time, double p_delta, List<int> *p_indices, int p_pingponged = 0) const;
Vector<Variant> method_track_get_params(int p_track, int p_key_idx) const;
StringName method_track_get_name(int p_track, int p_key_idx) const;
void copy_track(int p_track, Ref<Animation> p_to_animation);
void track_get_key_indices_in_range(int p_track, double p_time, double p_delta, List<int> *p_indices, int p_pingponged = 0) const;
void set_length(real_t p_length);
real_t get_length() const;
void set_loop_mode(LoopMode p_loop_mode);
LoopMode get_loop_mode() const;
void set_step(real_t p_step);
real_t get_step() const;
void clear();
void optimize(real_t p_allowed_velocity_err = 0.01, real_t p_allowed_angular_err = 0.01, int p_precision = 3);
void compress(uint32_t p_page_size = 8192, uint32_t p_fps = 120, float p_split_tolerance = 4.0); // 4.0 seems to be the split tolerance sweet spot from many tests
Animation();
~Animation();
};
VARIANT_ENUM_CAST(Animation::TrackType);
VARIANT_ENUM_CAST(Animation::InterpolationType);
VARIANT_ENUM_CAST(Animation::UpdateMode);
VARIANT_ENUM_CAST(Animation::HandleMode);
VARIANT_ENUM_CAST(Animation::LoopMode);
#endif // ANIMATION_H