mirror of
https://github.com/godotengine/godot.git
synced 2024-12-27 11:24:59 +08:00
419b342a9a
Make BC6 and BC7 CVTT faster while still having better quality than DXT5.
3148 lines
140 KiB
C++
3148 lines
140 KiB
C++
/*
|
|
Convection Texture Tools
|
|
Copyright (c) 2018-2019 Eric Lasota
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
a copy of this software and associated documentation files (the
|
|
"Software"), to deal in the Software without restriction, including
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
permit persons to whom the Software is furnished to do so, subject
|
|
to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included
|
|
in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
-------------------------------------------------------------------------------------
|
|
|
|
Portions based on DirectX Texture Library (DirectXTex)
|
|
|
|
Copyright (c) Microsoft Corporation. All rights reserved.
|
|
Licensed under the MIT License.
|
|
|
|
http://go.microsoft.com/fwlink/?LinkId=248926
|
|
*/
|
|
#include "ConvectionKernels_Config.h"
|
|
|
|
#if !defined(CVTT_SINGLE_FILE) || defined(CVTT_SINGLE_FILE_IMPL)
|
|
|
|
#include "ConvectionKernels.h"
|
|
#include "ConvectionKernels_ETC.h"
|
|
#include "ConvectionKernels_ETC1.h"
|
|
#include "ConvectionKernels_ETC2.h"
|
|
#include "ConvectionKernels_ETC2_Rounding.h"
|
|
#include "ConvectionKernels_ParallelMath.h"
|
|
#include "ConvectionKernels_FakeBT709_Rounding.h"
|
|
|
|
#include <cmath>
|
|
|
|
const int cvtt::Internal::ETCComputer::g_flipTables[2][2][8] =
|
|
{
|
|
{
|
|
{ 0, 1, 4, 5, 8, 9, 12, 13 },
|
|
{ 2, 3, 6, 7, 10, 11, 14, 15 }
|
|
},
|
|
{
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7 },
|
|
{ 8, 9, 10, 11, 12, 13, 14, 15 }
|
|
},
|
|
};
|
|
|
|
cvtt::ParallelMath::Float cvtt::Internal::ETCComputer::ComputeErrorUniform(const MUInt15 pixelA[3], const MUInt15 pixelB[3])
|
|
{
|
|
MSInt16 d0 = ParallelMath::LosslessCast<MSInt16>::Cast(pixelA[0]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixelB[0]);
|
|
MFloat fd0 = ParallelMath::ToFloat(d0);
|
|
MFloat error = fd0 * fd0;
|
|
for (int ch = 1; ch < 3; ch++)
|
|
{
|
|
MSInt16 d = ParallelMath::LosslessCast<MSInt16>::Cast(pixelA[ch]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixelB[ch]);
|
|
MFloat fd = ParallelMath::ToFloat(d);
|
|
error = error + fd * fd;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
cvtt::ParallelMath::Float cvtt::Internal::ETCComputer::ComputeErrorWeighted(const MUInt15 reconstructed[3], const MFloat preWeightedPixel[3], const Options options)
|
|
{
|
|
MFloat dr = ParallelMath::ToFloat(reconstructed[0]) * options.redWeight - preWeightedPixel[0];
|
|
MFloat dg = ParallelMath::ToFloat(reconstructed[1]) * options.greenWeight - preWeightedPixel[1];
|
|
MFloat db = ParallelMath::ToFloat(reconstructed[2]) * options.blueWeight - preWeightedPixel[2];
|
|
|
|
return dr * dr + dg * dg + db * db;
|
|
}
|
|
|
|
cvtt::ParallelMath::Float cvtt::Internal::ETCComputer::ComputeErrorFakeBT709(const MUInt15 reconstructed[3], const MFloat preWeightedPixel[3])
|
|
{
|
|
MFloat yuv[3];
|
|
ConvertToFakeBT709(yuv, reconstructed);
|
|
|
|
MFloat dy = yuv[0] - preWeightedPixel[0];
|
|
MFloat du = yuv[1] - preWeightedPixel[1];
|
|
MFloat dv = yuv[2] - preWeightedPixel[2];
|
|
|
|
return dy * dy + du * du + dv * dv;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::TestHalfBlock(MFloat &outError, MUInt16 &outSelectors, MUInt15 quantizedPackedColor, const MUInt15 pixels[8][3], const MFloat preWeightedPixels[8][3], const MSInt16 modifiers[4], bool isDifferential, const Options &options)
|
|
{
|
|
MUInt15 quantized[3];
|
|
MUInt15 unquantized[3];
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
quantized[ch] = (ParallelMath::RightShift(quantizedPackedColor, (ch * 5)) & ParallelMath::MakeUInt15(31));
|
|
|
|
if (isDifferential)
|
|
unquantized[ch] = (quantized[ch] << 3) | ParallelMath::RightShift(quantized[ch], 2);
|
|
else
|
|
unquantized[ch] = (quantized[ch] << 4) | quantized[ch];
|
|
}
|
|
|
|
MUInt16 selectors = ParallelMath::MakeUInt16(0);
|
|
MFloat totalError = ParallelMath::MakeFloatZero();
|
|
|
|
MUInt15 u15_255 = ParallelMath::MakeUInt15(255);
|
|
MSInt16 s16_zero = ParallelMath::MakeSInt16(0);
|
|
|
|
MUInt15 unquantizedModified[4][3];
|
|
for (unsigned int s = 0; s < 4; s++)
|
|
for (int ch = 0; ch < 3; ch++)
|
|
unquantizedModified[s][ch] = ParallelMath::Min(ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::ToSInt16(unquantized[ch]) + modifiers[s], s16_zero)), u15_255);
|
|
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
for (int px = 0; px < 8; px++)
|
|
{
|
|
MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
|
|
MUInt16 bestSelector = ParallelMath::MakeUInt16(0);
|
|
|
|
for (unsigned int s = 0; s < 4; s++)
|
|
{
|
|
MFloat error;
|
|
if (isFakeBT709)
|
|
error = ComputeErrorFakeBT709(unquantizedModified[s], preWeightedPixels[px]);
|
|
else if (isUniform)
|
|
error = ComputeErrorUniform(pixels[px], unquantizedModified[s]);
|
|
else
|
|
error = ComputeErrorWeighted(unquantizedModified[s], preWeightedPixels[px], options);
|
|
|
|
ParallelMath::FloatCompFlag errorBetter = ParallelMath::Less(error, bestError);
|
|
bestSelector = ParallelMath::Select(ParallelMath::FloatFlagToInt16(errorBetter), ParallelMath::MakeUInt16(s), bestSelector);
|
|
bestError = ParallelMath::Min(error, bestError);
|
|
}
|
|
|
|
totalError = totalError + bestError;
|
|
selectors = selectors | (bestSelector << (px * 2));
|
|
}
|
|
|
|
outError = totalError;
|
|
outSelectors = selectors;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::TestHalfBlockPunchthrough(MFloat &outError, MUInt16 &outSelectors, MUInt15 quantizedPackedColor, const MUInt15 pixels[8][3], const MFloat preWeightedPixels[8][3], const ParallelMath::Int16CompFlag isTransparent[8], const MUInt15 modifier, const Options &options)
|
|
{
|
|
MUInt15 quantized[3];
|
|
MUInt15 unquantized[3];
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
quantized[ch] = (ParallelMath::RightShift(quantizedPackedColor, (ch * 5)) & ParallelMath::MakeUInt15(31));
|
|
unquantized[ch] = (quantized[ch] << 3) | ParallelMath::RightShift(quantized[ch], 2);
|
|
}
|
|
|
|
MUInt16 selectors = ParallelMath::MakeUInt16(0);
|
|
MFloat totalError = ParallelMath::MakeFloatZero();
|
|
|
|
MUInt15 u15_255 = ParallelMath::MakeUInt15(255);
|
|
MSInt16 s16_zero = ParallelMath::MakeSInt16(0);
|
|
|
|
MUInt15 unquantizedModified[3][3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
unquantizedModified[0][ch] = ParallelMath::Max(unquantized[ch], modifier) - modifier;
|
|
unquantizedModified[1][ch] = unquantized[ch];
|
|
unquantizedModified[2][ch] = ParallelMath::Min(unquantized[ch] + modifier, u15_255);
|
|
}
|
|
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
for (int px = 0; px < 8; px++)
|
|
{
|
|
ParallelMath::FloatCompFlag isTransparentFloat = ParallelMath::Int16FlagToFloat(isTransparent[px]);
|
|
|
|
MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
|
|
MUInt15 bestSelector = ParallelMath::MakeUInt15(0);
|
|
|
|
for (unsigned int s = 0; s < 3; s++)
|
|
{
|
|
MFloat error;
|
|
if (isFakeBT709)
|
|
error = ComputeErrorFakeBT709(unquantizedModified[s], preWeightedPixels[px]);
|
|
else if (isUniform)
|
|
error = ComputeErrorUniform(pixels[px], unquantizedModified[s]);
|
|
else
|
|
error = ComputeErrorWeighted(unquantizedModified[s], preWeightedPixels[px], options);
|
|
|
|
ParallelMath::FloatCompFlag errorBetter = ParallelMath::Less(error, bestError);
|
|
bestSelector = ParallelMath::Select(ParallelMath::FloatFlagToInt16(errorBetter), ParallelMath::MakeUInt15(s), bestSelector);
|
|
bestError = ParallelMath::Min(error, bestError);
|
|
}
|
|
|
|
// Annoying quirk: The ETC encoding machinery assumes that selectors are in the table order in the spec, which isn't
|
|
// the same as their encoding bits, so the transparent index is actually 1 and the valid indexes are 0, 2, and 3.
|
|
|
|
// Remap selector 1 to 2, and 2 to 3
|
|
bestSelector = ParallelMath::Min(ParallelMath::MakeUInt15(3), bestSelector << 1);
|
|
|
|
// Mark zero transparent as
|
|
ParallelMath::ConditionalSet(bestError, isTransparentFloat, ParallelMath::MakeFloatZero());
|
|
ParallelMath::ConditionalSet(bestSelector, isTransparent[px], ParallelMath::MakeUInt15(1));
|
|
|
|
totalError = totalError + bestError;
|
|
selectors = selectors | (ParallelMath::LosslessCast<MUInt16>::Cast(bestSelector) << (px * 2));
|
|
}
|
|
|
|
outError = totalError;
|
|
outSelectors = selectors;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::FindBestDifferentialCombination(int flip, int d, const ParallelMath::Int16CompFlag canIgnoreSector[2], ParallelMath::Int16CompFlag& bestIsThisMode, MFloat& bestTotalError, MUInt15& bestFlip, MUInt15& bestD, MUInt15 bestColors[2], MUInt16 bestSelectors[2], MUInt15 bestTables[2], DifferentialResolveStorage &drs)
|
|
{
|
|
// We do this part scalar because most of the cost benefit of parallelization is in error evaluation,
|
|
// and this code has a LOT of early-outs and disjointed index lookups that vary heavily between blocks
|
|
// and save a lot of time.
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
bool canIgnore[2] = { ParallelMath::Extract(canIgnoreSector[0], block), ParallelMath::Extract(canIgnoreSector[1], block) };
|
|
bool canIgnoreEither = canIgnore[0] || canIgnore[1];
|
|
float blockBestTotalError = ParallelMath::Extract(bestTotalError, block);
|
|
float bestDiffErrors[2] = { FLT_MAX, FLT_MAX };
|
|
uint16_t bestDiffSelectors[2] = { 0, 0 };
|
|
uint16_t bestDiffColors[2] = { 0, 0 };
|
|
uint16_t bestDiffTables[2] = { 0, 0 };
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
unsigned int sectorNumAttempts = ParallelMath::Extract(drs.diffNumAttempts[sector], block);
|
|
for (unsigned int i = 0; i < sectorNumAttempts; i++)
|
|
{
|
|
float error = ParallelMath::Extract(drs.diffErrors[sector][i], block);
|
|
if (error < bestDiffErrors[sector])
|
|
{
|
|
bestDiffErrors[sector] = error;
|
|
bestDiffSelectors[sector] = ParallelMath::Extract(drs.diffSelectors[sector][i], block);
|
|
bestDiffColors[sector] = ParallelMath::Extract(drs.diffColors[sector][i], block);
|
|
bestDiffTables[sector] = ParallelMath::Extract(drs.diffTables[sector][i], block);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (canIgnore[0])
|
|
bestDiffColors[0] = bestDiffColors[1];
|
|
else if (canIgnore[1])
|
|
bestDiffColors[1] = bestDiffColors[0];
|
|
|
|
// The best differential possibilities must be better than the best total error
|
|
if (bestDiffErrors[0] + bestDiffErrors[1] < blockBestTotalError)
|
|
{
|
|
// Fast path if the best possible case is legal
|
|
if (canIgnoreEither || ETCDifferentialIsLegalScalar(bestDiffColors[0], bestDiffColors[1]))
|
|
{
|
|
ParallelMath::PutBoolInt16(bestIsThisMode, block, true);
|
|
ParallelMath::PutFloat(bestTotalError, block, bestDiffErrors[0] + bestDiffErrors[1]);
|
|
ParallelMath::PutUInt15(bestFlip, block, flip);
|
|
ParallelMath::PutUInt15(bestD, block, d);
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
ParallelMath::PutUInt15(bestColors[sector], block, bestDiffColors[sector]);
|
|
ParallelMath::PutUInt16(bestSelectors[sector], block, bestDiffSelectors[sector]);
|
|
ParallelMath::PutUInt15(bestTables[sector], block, bestDiffTables[sector]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Slow path: Sort the possible cases by quality, and search valid combinations
|
|
// TODO: Pre-flatten the error lists so this is nicer to cache
|
|
unsigned int numSortIndexes[2] = { 0, 0 };
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
unsigned int sectorNumAttempts = ParallelMath::Extract(drs.diffNumAttempts[sector], block);
|
|
|
|
for (unsigned int i = 0; i < sectorNumAttempts; i++)
|
|
{
|
|
if (ParallelMath::Extract(drs.diffErrors[sector][i], block) < blockBestTotalError)
|
|
drs.attemptSortIndexes[sector][numSortIndexes[sector]++] = i;
|
|
}
|
|
|
|
struct SortPredicate
|
|
{
|
|
const MFloat *diffErrors;
|
|
int block;
|
|
|
|
bool operator()(uint16_t a, uint16_t b) const
|
|
{
|
|
float errorA = ParallelMath::Extract(diffErrors[a], block);
|
|
float errorB = ParallelMath::Extract(diffErrors[b], block);
|
|
|
|
if (errorA < errorB)
|
|
return true;
|
|
if (errorA > errorB)
|
|
return false;
|
|
|
|
return a < b;
|
|
}
|
|
};
|
|
|
|
SortPredicate sp;
|
|
sp.diffErrors = drs.diffErrors[sector];
|
|
sp.block = block;
|
|
|
|
std::sort<uint16_t*, const SortPredicate&>(drs.attemptSortIndexes[sector], drs.attemptSortIndexes[sector] + numSortIndexes[sector], sp);
|
|
}
|
|
|
|
int scannedElements = 0;
|
|
for (unsigned int i = 0; i < numSortIndexes[0]; i++)
|
|
{
|
|
unsigned int attemptIndex0 = drs.attemptSortIndexes[0][i];
|
|
float error0 = ParallelMath::Extract(drs.diffErrors[0][attemptIndex0], block);
|
|
|
|
scannedElements++;
|
|
|
|
if (error0 >= blockBestTotalError)
|
|
break;
|
|
|
|
float maxError1 = ParallelMath::Extract(bestTotalError, block) - error0;
|
|
uint16_t diffColor0 = ParallelMath::Extract(drs.diffColors[0][attemptIndex0], block);
|
|
|
|
if (maxError1 < bestDiffErrors[1])
|
|
break;
|
|
|
|
for (unsigned int j = 0; j < numSortIndexes[1]; j++)
|
|
{
|
|
unsigned int attemptIndex1 = drs.attemptSortIndexes[1][j];
|
|
float error1 = ParallelMath::Extract(drs.diffErrors[1][attemptIndex1], block);
|
|
|
|
scannedElements++;
|
|
|
|
if (error1 >= maxError1)
|
|
break;
|
|
|
|
uint16_t diffColor1 = ParallelMath::Extract(drs.diffColors[1][attemptIndex1], block);
|
|
|
|
if (ETCDifferentialIsLegalScalar(diffColor0, diffColor1))
|
|
{
|
|
blockBestTotalError = error0 + error1;
|
|
|
|
ParallelMath::PutBoolInt16(bestIsThisMode, block, true);
|
|
ParallelMath::PutFloat(bestTotalError, block, blockBestTotalError);
|
|
ParallelMath::PutUInt15(bestFlip, block, flip);
|
|
ParallelMath::PutUInt15(bestD, block, d);
|
|
ParallelMath::PutUInt15(bestColors[0], block, diffColor0);
|
|
ParallelMath::PutUInt15(bestColors[1], block, diffColor1);
|
|
ParallelMath::PutUInt16(bestSelectors[0], block, ParallelMath::Extract(drs.diffSelectors[0][attemptIndex0], block));
|
|
ParallelMath::PutUInt16(bestSelectors[1], block, ParallelMath::Extract(drs.diffSelectors[1][attemptIndex1], block));
|
|
ParallelMath::PutUInt15(bestTables[0], block, ParallelMath::Extract(drs.diffTables[0][attemptIndex0], block));
|
|
ParallelMath::PutUInt15(bestTables[1], block, ParallelMath::Extract(drs.diffTables[1][attemptIndex1], block));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cvtt::ParallelMath::Int16CompFlag cvtt::Internal::ETCComputer::ETCDifferentialIsLegalForChannel(const MUInt15 &a, const MUInt15 &b)
|
|
{
|
|
MSInt16 diff = ParallelMath::LosslessCast<MSInt16>::Cast(b) - ParallelMath::LosslessCast<MSInt16>::Cast(a);
|
|
|
|
return ParallelMath::Less(ParallelMath::MakeSInt16(-5), diff) & ParallelMath::Less(diff, ParallelMath::MakeSInt16(4));
|
|
}
|
|
|
|
cvtt::ParallelMath::Int16CompFlag cvtt::Internal::ETCComputer::ETCDifferentialIsLegal(const MUInt15 &a, const MUInt15 &b)
|
|
{
|
|
MUInt15 mask = ParallelMath::MakeUInt15(31);
|
|
|
|
return ETCDifferentialIsLegalForChannel(ParallelMath::RightShift(a, 10), ParallelMath::RightShift(b, 10))
|
|
& ETCDifferentialIsLegalForChannel(ParallelMath::RightShift(a, 5) & mask, ParallelMath::RightShift(b, 5) & mask)
|
|
& ETCDifferentialIsLegalForChannel(a & mask, b & mask);
|
|
}
|
|
|
|
bool cvtt::Internal::ETCComputer::ETCDifferentialIsLegalForChannelScalar(const uint16_t &a, const uint16_t &b)
|
|
{
|
|
int16_t diff = static_cast<int16_t>(b) - static_cast<int16_t>(a);
|
|
|
|
return (-4 <= diff) && (diff <= 3);
|
|
}
|
|
|
|
bool cvtt::Internal::ETCComputer::ETCDifferentialIsLegalScalar(const uint16_t &a, const uint16_t &b)
|
|
{
|
|
MUInt15 mask = ParallelMath::MakeUInt15(31);
|
|
|
|
return ETCDifferentialIsLegalForChannelScalar((a >> 10), (b >> 10))
|
|
& ETCDifferentialIsLegalForChannelScalar((a >> 5) & 31, (b >> 5) & 31)
|
|
& ETCDifferentialIsLegalForChannelScalar(a & 31, b & 31);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::EncodeTMode(uint8_t *outputBuffer, MFloat &bestError, const ParallelMath::Int16CompFlag isIsolated[16], const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const Options &options)
|
|
{
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
|
|
|
|
MUInt15 isolatedTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
|
|
MUInt15 lineTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
|
|
|
|
MUInt15 numPixelsIsolated = ParallelMath::MakeUInt15(0);
|
|
|
|
// To speed this up, we compute line total as the sum, then subtract out isolated
|
|
for (unsigned int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
isolatedTotal[ch] = isolatedTotal[ch] + ParallelMath::SelectOrZero(isIsolated[px], pixels[px][ch]);
|
|
lineTotal[ch] = lineTotal[ch] + pixels[px][ch];
|
|
}
|
|
numPixelsIsolated = numPixelsIsolated + ParallelMath::SelectOrZero(isIsolated[px], ParallelMath::MakeUInt15(1));
|
|
}
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
lineTotal[ch] = lineTotal[ch] - isolatedTotal[ch];
|
|
|
|
MUInt15 numPixelsLine = ParallelMath::MakeUInt15(16) - numPixelsIsolated;
|
|
|
|
MUInt15 isolatedAverageQuantized[3];
|
|
MUInt15 isolatedAverageTargets[3];
|
|
{
|
|
int divisors[ParallelMath::ParallelSize];
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
divisors[block] = ParallelMath::Extract(numPixelsIsolated, block) * 34;
|
|
|
|
MUInt15 addend = (numPixelsIsolated << 4) | numPixelsIsolated;
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
// isolatedAverageQuantized[ch] = (isolatedTotal[ch] * 2 + numPixelsIsolated * 17) / (numPixelsIsolated * 34);
|
|
|
|
MUInt15 numerator = isolatedTotal[ch] + isolatedTotal[ch];
|
|
if (!isFakeBT709)
|
|
numerator = numerator + addend;
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int divisor = divisors[block];
|
|
if (divisor == 0)
|
|
ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, 0);
|
|
else
|
|
ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, ParallelMath::Extract(numerator, block) / divisor);
|
|
}
|
|
|
|
isolatedAverageTargets[ch] = numerator;
|
|
}
|
|
}
|
|
|
|
if (isFakeBT709)
|
|
ResolveTHFakeBT709Rounding(isolatedAverageQuantized, isolatedAverageTargets, numPixelsIsolated);
|
|
|
|
MUInt15 isolatedColor[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
isolatedColor[ch] = (isolatedAverageQuantized[ch]) | (isolatedAverageQuantized[ch] << 4);
|
|
|
|
MFloat isolatedError[16];
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
if (isFakeBT709)
|
|
isolatedError[px] = ComputeErrorFakeBT709(isolatedColor, preWeightedPixels[px]);
|
|
else if (isUniform)
|
|
isolatedError[px] = ComputeErrorUniform(pixels[px], isolatedColor);
|
|
else
|
|
isolatedError[px] = ComputeErrorWeighted(isolatedColor, preWeightedPixels[px], options);
|
|
}
|
|
|
|
MSInt32 bestSelectors = ParallelMath::MakeSInt32(0);
|
|
MUInt15 bestTable = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestLineColor = ParallelMath::MakeUInt15(0);
|
|
|
|
MSInt16 maxLine = ParallelMath::LosslessCast<MSInt16>::Cast(numPixelsLine);
|
|
MSInt16 minLine = ParallelMath::MakeSInt16(0) - maxLine;
|
|
|
|
int16_t clusterMaxLine = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int16_t blockMaxLine = ParallelMath::Extract(maxLine, block);
|
|
if (blockMaxLine > clusterMaxLine)
|
|
clusterMaxLine = blockMaxLine;
|
|
}
|
|
|
|
int16_t clusterMinLine = -clusterMaxLine;
|
|
|
|
int lineDivisors[ParallelMath::ParallelSize];
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
lineDivisors[block] = ParallelMath::Extract(numPixelsLine, block) * 34;
|
|
|
|
MUInt15 lineAddend = (numPixelsLine << 4) | numPixelsLine;
|
|
|
|
for (int table = 0; table < 8; table++)
|
|
{
|
|
int numUniqueColors[ParallelMath::ParallelSize];
|
|
MUInt15 uniqueQuantizedColors[31];
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
numUniqueColors[block] = 0;
|
|
|
|
MUInt15 modifier = ParallelMath::MakeUInt15(cvtt::Tables::ETC2::g_thModifierTable[table]);
|
|
MUInt15 modifierOffset = (modifier + modifier);
|
|
|
|
for (int16_t offsetPremultiplier = clusterMinLine; offsetPremultiplier <= clusterMaxLine; offsetPremultiplier++)
|
|
{
|
|
MSInt16 clampedOffsetPremultiplier = ParallelMath::Max(minLine, ParallelMath::Min(maxLine, ParallelMath::MakeSInt16(offsetPremultiplier)));
|
|
MSInt16 modifierAddend = ParallelMath::CompactMultiply(clampedOffsetPremultiplier, modifierOffset);
|
|
|
|
MUInt15 quantized[3];
|
|
if (isFakeBT709)
|
|
{
|
|
MUInt15 targets[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
//quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
|
|
MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch]) + modifierAddend));
|
|
MUInt15 divided = ParallelMath::MakeUInt15(0);
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int divisor = lineDivisors[block];
|
|
if (divisor == 0)
|
|
ParallelMath::PutUInt15(divided, block, 0);
|
|
else
|
|
ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
|
|
}
|
|
quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
|
|
targets[ch] = numerator;
|
|
}
|
|
|
|
ResolveTHFakeBT709Rounding(quantized, targets, numPixelsLine);
|
|
}
|
|
else
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
//quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + numDAIILine * 17 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
|
|
MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch] + lineAddend) + modifierAddend));
|
|
MUInt15 divided = ParallelMath::MakeUInt15(0);
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int divisor = lineDivisors[block];
|
|
if (divisor == 0)
|
|
ParallelMath::PutUInt15(divided, block, 0);
|
|
else
|
|
ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
|
|
}
|
|
quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
|
|
}
|
|
}
|
|
|
|
MUInt15 packedColor = quantized[0] | (quantized[1] << 5) | (quantized[2] << 10);
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t blockPackedColor = ParallelMath::Extract(packedColor, block);
|
|
if (numUniqueColors[block] == 0 || blockPackedColor != ParallelMath::Extract(uniqueQuantizedColors[numUniqueColors[block] - 1], block))
|
|
ParallelMath::PutUInt15(uniqueQuantizedColors[numUniqueColors[block]++], block, blockPackedColor);
|
|
}
|
|
}
|
|
|
|
// Stripe unfilled unique colors
|
|
int maxUniqueColors = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (numUniqueColors[block] > maxUniqueColors)
|
|
maxUniqueColors = numUniqueColors[block];
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t fillColor = ParallelMath::Extract(uniqueQuantizedColors[0], block);
|
|
|
|
int numUnique = numUniqueColors[block];
|
|
for (int fill = numUnique + 1; fill < maxUniqueColors; fill++)
|
|
ParallelMath::PutUInt15(uniqueQuantizedColors[fill], block, fillColor);
|
|
}
|
|
|
|
for (int ci = 0; ci < maxUniqueColors; ci++)
|
|
{
|
|
MUInt15 lineColors[3][3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 quantizedChannel = (ParallelMath::RightShift(uniqueQuantizedColors[ci], (ch * 5)) & ParallelMath::MakeUInt15(15));
|
|
|
|
MUInt15 unquantizedColor = (quantizedChannel << 4) | quantizedChannel;
|
|
lineColors[0][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantizedColor + modifier);
|
|
lineColors[1][ch] = unquantizedColor;
|
|
lineColors[2][ch] = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedColor) - ParallelMath::LosslessCast<MSInt16>::Cast(modifier)));
|
|
}
|
|
|
|
MSInt32 selectors = ParallelMath::MakeSInt32(0);
|
|
MFloat error = ParallelMath::MakeFloatZero();
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MFloat pixelError = isolatedError[px];
|
|
|
|
MUInt15 pixelBestSelector = ParallelMath::MakeUInt15(0);
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
MFloat error = isUniform ? ComputeErrorUniform(lineColors[i], pixels[px]) : ComputeErrorWeighted(lineColors[i], preWeightedPixels[px], options);
|
|
ParallelMath::FloatCompFlag errorBetter = ParallelMath::Less(error, pixelError);
|
|
pixelError = ParallelMath::Min(error, pixelError);
|
|
pixelBestSelector = ParallelMath::Select(ParallelMath::FloatFlagToInt16(errorBetter), ParallelMath::MakeUInt15(i + 1), pixelBestSelector);
|
|
}
|
|
|
|
error = error + pixelError;
|
|
selectors = selectors | (ParallelMath::ToInt32(pixelBestSelector) << (px * 2));
|
|
}
|
|
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestError));
|
|
bestError = ParallelMath::Min(error, bestError);
|
|
|
|
if (ParallelMath::AnySet(errorBetter))
|
|
{
|
|
ParallelMath::ConditionalSet(bestLineColor, errorBetter, uniqueQuantizedColors[ci]);
|
|
ParallelMath::ConditionalSet(bestSelectors, errorBetter, selectors);
|
|
ParallelMath::ConditionalSet(bestTable, errorBetter, ParallelMath::MakeUInt15(table));
|
|
bestIsThisMode = bestIsThisMode | errorBetter;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (ParallelMath::Extract(bestIsThisMode, block))
|
|
{
|
|
uint32_t lowBits = 0;
|
|
uint32_t highBits = 0;
|
|
|
|
uint16_t blockBestLineColor = ParallelMath::Extract(bestLineColor, block);
|
|
ParallelMath::ScalarUInt16 blockIsolatedAverageQuantized[3];
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
blockIsolatedAverageQuantized[ch] = ParallelMath::Extract(isolatedAverageQuantized[ch], block);
|
|
|
|
uint16_t blockBestTable = ParallelMath::Extract(bestTable, block);
|
|
int32_t blockBestSelectors = ParallelMath::Extract(bestSelectors, block);
|
|
|
|
ParallelMath::ScalarUInt16 lineColor[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
lineColor[ch] = (blockBestLineColor >> (ch * 5)) & 15;
|
|
|
|
EmitTModeBlock(outputBuffer + block * 8, lineColor, blockIsolatedAverageQuantized, blockBestSelectors, blockBestTable, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::EncodeHMode(uint8_t *outputBuffer, MFloat &bestError, const ParallelMath::Int16CompFlag groupings[16], const MUInt15 pixels[16][3], HModeEval &he, const MFloat preWeightedPixels[16][3], const Options &options)
|
|
{
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
MUInt15 zero15 = ParallelMath::MakeUInt15(0);
|
|
|
|
MUInt15 counts[2] = { zero15, zero15 };
|
|
|
|
ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
|
|
|
|
MUInt15 totals[2][3] =
|
|
{
|
|
{ zero15, zero15, zero15 },
|
|
{ zero15, zero15, zero15 }
|
|
};
|
|
|
|
for (unsigned int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
totals[0][ch] = totals[0][ch] + pixels[px][ch];
|
|
totals[1][ch] = totals[1][ch] + ParallelMath::SelectOrZero(groupings[px], pixels[px][ch]);
|
|
}
|
|
counts[1] = counts[1] + ParallelMath::SelectOrZero(groupings[px], ParallelMath::MakeUInt15(1));
|
|
}
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
totals[0][ch] = totals[0][ch] - totals[1][ch];
|
|
counts[0] = ParallelMath::MakeUInt15(16) - counts[1];
|
|
|
|
MUInt16 bestSectorBits = ParallelMath::MakeUInt16(0);
|
|
MUInt16 bestSignBits = ParallelMath::MakeUInt16(0);
|
|
MUInt15 bestColors[2] = { zero15, zero15 };
|
|
MUInt15 bestTable = ParallelMath::MakeUInt15(0);
|
|
|
|
for (int table = 0; table < 8; table++)
|
|
{
|
|
MUInt15 numUniqueColors = zero15;
|
|
|
|
int modifier = cvtt::Tables::ETC1::g_thModifierTable[table];
|
|
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int blockNumUniqueColors = 0;
|
|
uint16_t blockUniqueQuantizedColors[31];
|
|
|
|
int maxOffsetMultiplier = ParallelMath::Extract(counts[sector], block);
|
|
int minOffsetMultiplier = -maxOffsetMultiplier;
|
|
|
|
int modifierOffset = modifier * 2;
|
|
|
|
int blockSectorCounts = ParallelMath::Extract(counts[sector], block);
|
|
int blockSectorTotals[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
blockSectorTotals[ch] = ParallelMath::Extract(totals[sector][ch], block);
|
|
|
|
for (int offsetPremultiplier = minOffsetMultiplier; offsetPremultiplier <= maxOffsetMultiplier; offsetPremultiplier++)
|
|
{
|
|
// TODO: This isn't ideal for FakeBT709
|
|
int16_t quantized[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
if (blockSectorCounts == 0)
|
|
quantized[ch] = 0;
|
|
else
|
|
quantized[ch] = std::min<int16_t>(15, std::max<int16_t>(0, (blockSectorTotals[ch] * 2 + blockSectorCounts * 17 + modifierOffset * offsetPremultiplier)) / (blockSectorCounts * 34));
|
|
}
|
|
|
|
uint16_t packedColor = (quantized[0] << 10) | (quantized[1] << 5) | quantized[2];
|
|
if (blockNumUniqueColors == 0 || packedColor != blockUniqueQuantizedColors[blockNumUniqueColors - 1])
|
|
{
|
|
assert(blockNumUniqueColors < 32);
|
|
blockUniqueQuantizedColors[blockNumUniqueColors++] = packedColor;
|
|
}
|
|
}
|
|
|
|
ParallelMath::PutUInt15(he.numUniqueColors[sector], block, blockNumUniqueColors);
|
|
|
|
int baseIndex = 0;
|
|
if (sector == 1)
|
|
baseIndex = ParallelMath::Extract(he.numUniqueColors[0], block);
|
|
|
|
for (int i = 0; i < blockNumUniqueColors; i++)
|
|
ParallelMath::PutUInt15(he.uniqueQuantizedColors[baseIndex + i], block, blockUniqueQuantizedColors[i]);
|
|
}
|
|
}
|
|
|
|
MUInt15 totalColors = he.numUniqueColors[0] + he.numUniqueColors[1];
|
|
int maxErrorColors = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
maxErrorColors = std::max<int>(maxErrorColors, ParallelMath::Extract(totalColors, block));
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int lastColor = ParallelMath::Extract(totalColors, block);
|
|
uint16_t stripeColor = ParallelMath::Extract(he.uniqueQuantizedColors[0], block);
|
|
for (int i = lastColor; i < maxErrorColors; i++)
|
|
ParallelMath::PutUInt15(he.uniqueQuantizedColors[i], block, stripeColor);
|
|
}
|
|
|
|
for (int ci = 0; ci < maxErrorColors; ci++)
|
|
{
|
|
MUInt15 fifteen = ParallelMath::MakeUInt15(15);
|
|
MUInt15 twoFiftyFive = ParallelMath::MakeUInt15(255);
|
|
MSInt16 zeroS16 = ParallelMath::MakeSInt16(0);
|
|
|
|
MUInt15 colors[2][3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 quantizedChannel = ParallelMath::RightShift(he.uniqueQuantizedColors[ci], ((2 - ch) * 5)) & fifteen;
|
|
|
|
MUInt15 unquantizedColor = (quantizedChannel << 4) | quantizedChannel;
|
|
colors[0][ch] = ParallelMath::Min(twoFiftyFive, unquantizedColor + modifier);
|
|
colors[1][ch] = ParallelMath::ToUInt15(ParallelMath::Max(zeroS16, ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedColor) - ParallelMath::MakeSInt16(modifier)));
|
|
}
|
|
|
|
MUInt16 signBits = ParallelMath::MakeUInt16(0);
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MFloat errors[2];
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
if (isFakeBT709)
|
|
errors[i] = ComputeErrorFakeBT709(colors[i], preWeightedPixels[px]);
|
|
else if (isUniform)
|
|
errors[i] = ComputeErrorUniform(colors[i], pixels[px]);
|
|
else
|
|
errors[i] = ComputeErrorWeighted(colors[i], preWeightedPixels[px], options);
|
|
}
|
|
|
|
ParallelMath::Int16CompFlag errorOneLess = ParallelMath::FloatFlagToInt16(ParallelMath::Less(errors[1], errors[0]));
|
|
he.errors[ci][px] = ParallelMath::Min(errors[0], errors[1]);
|
|
signBits = signBits | ParallelMath::SelectOrZero(errorOneLess, ParallelMath::MakeUInt16(1 << px));
|
|
}
|
|
he.signBits[ci] = signBits;
|
|
}
|
|
|
|
int maxUniqueColorCombos = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int numUniqueColorCombos = ParallelMath::Extract(he.numUniqueColors[0], block) * ParallelMath::Extract(he.numUniqueColors[1], block);
|
|
if (numUniqueColorCombos > maxUniqueColorCombos)
|
|
maxUniqueColorCombos = numUniqueColorCombos;
|
|
}
|
|
|
|
MUInt15 indexes[2] = { zero15, zero15 };
|
|
MUInt15 maxIndex[2] = { he.numUniqueColors[0] - ParallelMath::MakeUInt15(1), he.numUniqueColors[1] - ParallelMath::MakeUInt15(1) };
|
|
|
|
int block1Starts[ParallelMath::ParallelSize];
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
block1Starts[block] = ParallelMath::Extract(he.numUniqueColors[0], block);
|
|
|
|
for (int combo = 0; combo < maxUniqueColorCombos; combo++)
|
|
{
|
|
MUInt15 index0 = indexes[0] + ParallelMath::MakeUInt15(1);
|
|
ParallelMath::Int16CompFlag index0Overflow = ParallelMath::Less(maxIndex[0], index0);
|
|
ParallelMath::ConditionalSet(index0, index0Overflow, ParallelMath::MakeUInt15(0));
|
|
|
|
MUInt15 index1 = ParallelMath::Min(maxIndex[1], indexes[1] + ParallelMath::SelectOrZero(index0Overflow, ParallelMath::MakeUInt15(1)));
|
|
indexes[0] = index0;
|
|
indexes[1] = index1;
|
|
|
|
int ci0[ParallelMath::ParallelSize];
|
|
int ci1[ParallelMath::ParallelSize];
|
|
MUInt15 color0;
|
|
MUInt15 color1;
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
ci0[block] = ParallelMath::Extract(index0, block);
|
|
ci1[block] = ParallelMath::Extract(index1, block) + block1Starts[block];
|
|
ParallelMath::PutUInt15(color0, block, ParallelMath::Extract(he.uniqueQuantizedColors[ci0[block]], block));
|
|
ParallelMath::PutUInt15(color1, block, ParallelMath::Extract(he.uniqueQuantizedColors[ci1[block]], block));
|
|
}
|
|
|
|
MFloat totalError = ParallelMath::MakeFloatZero();
|
|
MUInt16 sectorBits = ParallelMath::MakeUInt16(0);
|
|
MUInt16 signBits = ParallelMath::MakeUInt16(0);
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MFloat errorCI0;
|
|
MFloat errorCI1;
|
|
MUInt16 signBits0;
|
|
MUInt16 signBits1;
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
ParallelMath::PutFloat(errorCI0, block, ParallelMath::Extract(he.errors[ci0[block]][px], block));
|
|
ParallelMath::PutFloat(errorCI1, block, ParallelMath::Extract(he.errors[ci1[block]][px], block));
|
|
ParallelMath::PutUInt16(signBits0, block, ParallelMath::Extract(he.signBits[ci0[block]], block));
|
|
ParallelMath::PutUInt16(signBits1, block, ParallelMath::Extract(he.signBits[ci1[block]], block));
|
|
}
|
|
|
|
totalError = totalError + ParallelMath::Min(errorCI0, errorCI1);
|
|
|
|
MUInt16 bitPosition = ParallelMath::MakeUInt16(1 << px);
|
|
|
|
ParallelMath::Int16CompFlag error1Better = ParallelMath::FloatFlagToInt16(ParallelMath::Less(errorCI1, errorCI0));
|
|
|
|
sectorBits = sectorBits | ParallelMath::SelectOrZero(error1Better, bitPosition);
|
|
signBits = signBits | (bitPosition & ParallelMath::Select(error1Better, signBits1, signBits0));
|
|
}
|
|
|
|
ParallelMath::FloatCompFlag totalErrorBetter = ParallelMath::Less(totalError, bestError);
|
|
ParallelMath::Int16CompFlag totalErrorBetter16 = ParallelMath::FloatFlagToInt16(totalErrorBetter);
|
|
if (ParallelMath::AnySet(totalErrorBetter16))
|
|
{
|
|
bestIsThisMode = bestIsThisMode | totalErrorBetter16;
|
|
ParallelMath::ConditionalSet(bestTable, totalErrorBetter16, ParallelMath::MakeUInt15(table));
|
|
ParallelMath::ConditionalSet(bestColors[0], totalErrorBetter16, color0);
|
|
ParallelMath::ConditionalSet(bestColors[1], totalErrorBetter16, color1);
|
|
ParallelMath::ConditionalSet(bestSectorBits, totalErrorBetter16, sectorBits);
|
|
ParallelMath::ConditionalSet(bestSignBits, totalErrorBetter16, signBits);
|
|
bestError = ParallelMath::Min(totalError, bestError);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ParallelMath::AnySet(bestIsThisMode))
|
|
{
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (!ParallelMath::Extract(bestIsThisMode, block))
|
|
continue;
|
|
|
|
ParallelMath::ScalarUInt16 blockBestColors[2] = { ParallelMath::Extract(bestColors[0], block), ParallelMath::Extract(bestColors[1], block) };
|
|
ParallelMath::ScalarUInt16 blockBestSectorBits = ParallelMath::Extract(bestSectorBits, block);
|
|
ParallelMath::ScalarUInt16 blockBestSignBits = ParallelMath::Extract(bestSignBits, block);
|
|
ParallelMath::ScalarUInt16 blockBestTable = ParallelMath::Extract(bestTable, block);
|
|
|
|
EmitHModeBlock(outputBuffer + block * 8, blockBestColors, blockBestSectorBits, blockBestSignBits, blockBestTable, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::EncodeVirtualTModePunchthrough(uint8_t *outputBuffer, MFloat &bestError, const ParallelMath::Int16CompFlag isIsolatedBase[16], const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const ParallelMath::Int16CompFlag isTransparent[16], const ParallelMath::Int16CompFlag& anyTransparent, const ParallelMath::Int16CompFlag& allTransparent, const Options &options)
|
|
{
|
|
// We treat T and H mode as the same mode ("Virtual T mode") with punchthrough, because of how the colors work:
|
|
//
|
|
// T mode: C1, C2+M, Transparent, C2-M
|
|
// H mode: C1+M, C1-M, Transparent, C2-M
|
|
//
|
|
// So in either case, we have 2 colors +/- a modifier, and a third unique color, which is basically T mode except without the middle color.
|
|
// The only thing that matters is whether it's better to store the isolated color as T mode color 1, or store it offset in H mode color 2.
|
|
//
|
|
// Sometimes it won't even be possible to store it in H mode color 2 because the table low bit derives from a numeric comparison of the colors,
|
|
// but unlike opaque blocks, we can't flip them.
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
ParallelMath::FloatCompFlag isTransparentF[16];
|
|
for (int px = 0; px < 16; px++)
|
|
isTransparentF[px] = ParallelMath::Int16FlagToFloat(isTransparent[px]);
|
|
|
|
ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
|
|
ParallelMath::Int16CompFlag bestIsHMode = ParallelMath::MakeBoolInt16(false);
|
|
|
|
MUInt15 isolatedTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
|
|
MUInt15 lineTotal[3] = { ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0), ParallelMath::MakeUInt15(0) };
|
|
|
|
MUInt15 numPixelsIsolated = ParallelMath::MakeUInt15(0);
|
|
MUInt15 numPixelsLine = ParallelMath::MakeUInt15(0);
|
|
|
|
ParallelMath::Int16CompFlag isIsolated[16];
|
|
ParallelMath::Int16CompFlag isLine[16];
|
|
|
|
for (unsigned int px = 0; px < 16; px++)
|
|
{
|
|
ParallelMath::Int16CompFlag isOpaque = ParallelMath::Not(isTransparent[px]);
|
|
isIsolated[px] = isIsolatedBase[px] & isOpaque;
|
|
isLine[px] = ParallelMath::Not(isIsolatedBase[px]) & isOpaque;
|
|
}
|
|
|
|
for (unsigned int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
isolatedTotal[ch] = isolatedTotal[ch] + ParallelMath::SelectOrZero(isIsolated[px], pixels[px][ch]);
|
|
lineTotal[ch] = lineTotal[ch] + ParallelMath::SelectOrZero(isLine[px], pixels[px][ch]);
|
|
}
|
|
numPixelsIsolated = numPixelsIsolated + ParallelMath::SelectOrZero(isIsolated[px], ParallelMath::MakeUInt15(1));
|
|
numPixelsLine = numPixelsLine + ParallelMath::SelectOrZero(isLine[px], ParallelMath::MakeUInt15(1));
|
|
}
|
|
|
|
MUInt15 isolatedAverageQuantized[3];
|
|
MUInt15 hModeIsolatedQuantized[8][3];
|
|
MUInt15 isolatedAverageTargets[3];
|
|
{
|
|
int divisors[ParallelMath::ParallelSize];
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
divisors[block] = ParallelMath::Extract(numPixelsIsolated, block) * 34;
|
|
|
|
MUInt15 addend = (numPixelsIsolated << 4) | numPixelsIsolated;
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
// isolatedAverageQuantized[ch] = (isolatedTotal[ch] * 2 + numPixelsIsolated * 17) / (numPixelsIsolated * 34);
|
|
|
|
MUInt15 numerator = isolatedTotal[ch] + isolatedTotal[ch];
|
|
if (!isFakeBT709)
|
|
numerator = numerator + addend;
|
|
|
|
MUInt15 hModeIsolatedNumerators[8];
|
|
for (int table = 0; table < 8; table++)
|
|
{
|
|
// FIXME: Handle fake BT.709 correctly
|
|
MUInt15 offsetTotal = isolatedTotal[ch] + ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(ParallelMath::MakeUInt15(cvtt::Tables::ETC2::g_thModifierTable[table]), numPixelsIsolated));
|
|
|
|
hModeIsolatedNumerators[table] = (offsetTotal + offsetTotal) + addend;
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int divisor = divisors[block];
|
|
if (divisor == 0)
|
|
{
|
|
ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, 0);
|
|
for (int table = 0; table < 8; table++)
|
|
ParallelMath::PutUInt15(hModeIsolatedQuantized[table][ch], block, 0);
|
|
}
|
|
else
|
|
{
|
|
ParallelMath::PutUInt15(isolatedAverageQuantized[ch], block, ParallelMath::Extract(numerator, block) / divisor);
|
|
for (int table = 0; table < 8; table++)
|
|
ParallelMath::PutUInt15(hModeIsolatedQuantized[table][ch], block, ParallelMath::Extract(hModeIsolatedNumerators[table], block) / divisor);
|
|
}
|
|
}
|
|
|
|
isolatedAverageTargets[ch] = numerator;
|
|
}
|
|
}
|
|
|
|
if (isFakeBT709)
|
|
ResolveTHFakeBT709Rounding(isolatedAverageQuantized, isolatedAverageTargets, numPixelsIsolated);
|
|
|
|
for (int table = 0; table < 8; table++)
|
|
for (int ch = 0; ch < 3; ch++)
|
|
hModeIsolatedQuantized[table][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), hModeIsolatedQuantized[table][ch]);
|
|
|
|
MUInt15 isolatedColor[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
isolatedColor[ch] = (isolatedAverageQuantized[ch]) | (isolatedAverageQuantized[ch] << 4);
|
|
|
|
MFloat isolatedError[16];
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
if (isFakeBT709)
|
|
isolatedError[px] = ComputeErrorFakeBT709(isolatedColor, preWeightedPixels[px]);
|
|
else if (isUniform)
|
|
isolatedError[px] = ComputeErrorUniform(pixels[px], isolatedColor);
|
|
else
|
|
isolatedError[px] = ComputeErrorWeighted(isolatedColor, preWeightedPixels[px], options);
|
|
|
|
ParallelMath::ConditionalSet(isolatedError[px], isTransparentF[px], ParallelMath::MakeFloatZero());
|
|
}
|
|
|
|
MSInt32 bestSelectors = ParallelMath::MakeSInt32(0);
|
|
MUInt15 bestTable = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestLineColor = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestIsolatedColor = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestHModeColor2 = ParallelMath::MakeUInt15(0);
|
|
ParallelMath::Int16CompFlag bestUseHMode = ParallelMath::MakeBoolInt16(false);
|
|
|
|
MSInt16 maxLine = ParallelMath::LosslessCast<MSInt16>::Cast(numPixelsLine);
|
|
MSInt16 minLine = ParallelMath::MakeSInt16(0) - maxLine;
|
|
|
|
int16_t clusterMaxLine = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int16_t blockMaxLine = ParallelMath::Extract(maxLine, block);
|
|
if (blockMaxLine > clusterMaxLine)
|
|
clusterMaxLine = blockMaxLine;
|
|
}
|
|
|
|
int16_t clusterMinLine = -clusterMaxLine;
|
|
|
|
int lineDivisors[ParallelMath::ParallelSize];
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
lineDivisors[block] = ParallelMath::Extract(numPixelsLine, block) * 34;
|
|
|
|
MUInt15 lineAddend = (numPixelsLine << 4) | numPixelsLine;
|
|
|
|
for (int table = 0; table < 8; table++)
|
|
{
|
|
int numUniqueColors[ParallelMath::ParallelSize];
|
|
MUInt15 uniqueQuantizedColors[31];
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
numUniqueColors[block] = 0;
|
|
|
|
MUInt15 modifier = ParallelMath::MakeUInt15(cvtt::Tables::ETC2::g_thModifierTable[table]);
|
|
MUInt15 modifierOffset = (modifier + modifier);
|
|
|
|
for (int16_t offsetPremultiplier = clusterMinLine; offsetPremultiplier <= clusterMaxLine; offsetPremultiplier += 2)
|
|
{
|
|
MSInt16 clampedOffsetPremultiplier = ParallelMath::Max(minLine, ParallelMath::Min(maxLine, ParallelMath::MakeSInt16(offsetPremultiplier)));
|
|
MSInt16 modifierAddend = ParallelMath::CompactMultiply(clampedOffsetPremultiplier, modifierOffset);
|
|
|
|
MUInt15 quantized[3];
|
|
if (isFakeBT709)
|
|
{
|
|
MUInt15 targets[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
//quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
|
|
MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch]) + modifierAddend));
|
|
MUInt15 divided = ParallelMath::MakeUInt15(0);
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int divisor = lineDivisors[block];
|
|
if (divisor == 0)
|
|
ParallelMath::PutUInt15(divided, block, 0);
|
|
else
|
|
ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
|
|
}
|
|
quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
|
|
targets[ch] = numerator;
|
|
}
|
|
|
|
ResolveTHFakeBT709Rounding(quantized, targets, numPixelsLine);
|
|
}
|
|
else
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
//quantized[ch] = std::min<int16_t>(15, std::max(0, (lineTotal[ch] * 2 + numDAIILine * 17 + modifierOffset * offsetPremultiplier)) / (numDAIILine * 34));
|
|
MUInt15 numerator = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(lineTotal[ch] + lineTotal[ch] + lineAddend) + modifierAddend));
|
|
MUInt15 divided = ParallelMath::MakeUInt15(0);
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int divisor = lineDivisors[block];
|
|
if (divisor == 0)
|
|
ParallelMath::PutUInt15(divided, block, 0);
|
|
else
|
|
ParallelMath::PutUInt15(divided, block, ParallelMath::Extract(numerator, block) / divisor);
|
|
}
|
|
quantized[ch] = ParallelMath::Min(ParallelMath::MakeUInt15(15), divided);
|
|
}
|
|
}
|
|
|
|
MUInt15 packedColor = (quantized[0] << 10) | (quantized[1] << 5) | quantized[2];
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t blockPackedColor = ParallelMath::Extract(packedColor, block);
|
|
if (numUniqueColors[block] == 0 || blockPackedColor != ParallelMath::Extract(uniqueQuantizedColors[numUniqueColors[block] - 1], block))
|
|
ParallelMath::PutUInt15(uniqueQuantizedColors[numUniqueColors[block]++], block, blockPackedColor);
|
|
}
|
|
}
|
|
|
|
// Stripe unfilled unique colors
|
|
int maxUniqueColors = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (numUniqueColors[block] > maxUniqueColors)
|
|
maxUniqueColors = numUniqueColors[block];
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t fillColor = ParallelMath::Extract(uniqueQuantizedColors[0], block);
|
|
|
|
int numUnique = numUniqueColors[block];
|
|
for (int fill = numUnique + 1; fill < maxUniqueColors; fill++)
|
|
ParallelMath::PutUInt15(uniqueQuantizedColors[fill], block, fillColor);
|
|
}
|
|
|
|
MFloat hModeErrors[16];
|
|
MUInt15 hModeUnquantizedColor[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 quantizedChannel = hModeIsolatedQuantized[table][ch];
|
|
|
|
MUInt15 unquantizedCh = (quantizedChannel << 4) | quantizedChannel;
|
|
hModeUnquantizedColor[ch] = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedCh) - ParallelMath::LosslessCast<MSInt16>::Cast(modifier)));
|
|
}
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
hModeErrors[px] = isUniform ? ComputeErrorUniform(hModeUnquantizedColor, pixels[px]) : ComputeErrorWeighted(hModeUnquantizedColor, preWeightedPixels[px], options);
|
|
ParallelMath::ConditionalSet(hModeErrors[px], isTransparentF[px], ParallelMath::MakeFloatZero());
|
|
}
|
|
|
|
MUInt15 packedHModeColor2 = (hModeIsolatedQuantized[table][0] << 10) | (hModeIsolatedQuantized[table][1] << 5) | hModeIsolatedQuantized[table][2];
|
|
ParallelMath::Int16CompFlag tableLowBitIsZero = ((table & 1) == 0) ? ParallelMath::MakeBoolInt16(true) : ParallelMath::MakeBoolInt16(false);
|
|
|
|
for (int ci = 0; ci < maxUniqueColors; ci++)
|
|
{
|
|
MUInt15 lineColors[2][3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 quantizedChannel = (ParallelMath::RightShift(uniqueQuantizedColors[ci], 10 - (ch * 5)) & ParallelMath::MakeUInt15(15));
|
|
|
|
MUInt15 unquantizedColor = (quantizedChannel << 4) | quantizedChannel;
|
|
lineColors[0][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantizedColor + modifier);
|
|
lineColors[1][ch] = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), ParallelMath::LosslessCast<MSInt16>::Cast(unquantizedColor) - ParallelMath::LosslessCast<MSInt16>::Cast(modifier)));
|
|
}
|
|
|
|
MUInt15 bestLineSelector[16];
|
|
MFloat bestLineError[16];
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MFloat lineErrors[2];
|
|
for (int i = 0; i < 2; i++)
|
|
lineErrors[i] = isUniform ? ComputeErrorUniform(lineColors[i], pixels[px]) : ComputeErrorWeighted(lineColors[i], preWeightedPixels[px], options);
|
|
|
|
ParallelMath::Int16CompFlag firstIsBetter = ParallelMath::FloatFlagToInt16(ParallelMath::LessOrEqual(lineErrors[0], lineErrors[1]));
|
|
bestLineSelector[px] = ParallelMath::Select(firstIsBetter, ParallelMath::MakeUInt15(1), ParallelMath::MakeUInt15(3));
|
|
bestLineError[px] = ParallelMath::Min(lineErrors[0], lineErrors[1]);
|
|
|
|
ParallelMath::ConditionalSet(bestLineError[px], isTransparentF[px], ParallelMath::MakeFloatZero());
|
|
}
|
|
|
|
// One case considered here was if it was possible to force H mode to be valid when the line color is unused.
|
|
// That case isn't actually useful because it's equivalent to the isolated color being unused at maximum offset,
|
|
// which is always checked after a swap.
|
|
MFloat tModeError = ParallelMath::MakeFloatZero();
|
|
MFloat hModeError = ParallelMath::MakeFloatZero();
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
tModeError = tModeError + ParallelMath::Min(bestLineError[px], isolatedError[px]);
|
|
hModeError = hModeError + ParallelMath::Min(bestLineError[px], hModeErrors[px]);
|
|
}
|
|
|
|
ParallelMath::FloatCompFlag hLessError = ParallelMath::Less(hModeError, tModeError);
|
|
|
|
MUInt15 packedHModeColor1 = uniqueQuantizedColors[ci];
|
|
|
|
ParallelMath::Int16CompFlag hModeTableLowBitMustBeZero = ParallelMath::Less(packedHModeColor1, packedHModeColor2);
|
|
|
|
ParallelMath::Int16CompFlag hModeIsLegal = ParallelMath::Equal(hModeTableLowBitMustBeZero, tableLowBitIsZero);
|
|
ParallelMath::Int16CompFlag useHMode = ParallelMath::FloatFlagToInt16(hLessError) & hModeIsLegal;
|
|
|
|
MFloat roundBestError = tModeError;
|
|
ParallelMath::ConditionalSet(roundBestError, ParallelMath::Int16FlagToFloat(useHMode), hModeError);
|
|
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(roundBestError, bestError));
|
|
ParallelMath::FloatCompFlag useHModeF = ParallelMath::Int16FlagToFloat(useHMode);
|
|
|
|
if (ParallelMath::AnySet(errorBetter))
|
|
{
|
|
MSInt32 selectors = ParallelMath::MakeSInt32(0);
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MUInt15 selector = bestLineSelector[px];
|
|
|
|
MFloat isolatedPixelError = ParallelMath::Select(useHModeF, hModeErrors[px], isolatedError[px]);
|
|
ParallelMath::Int16CompFlag isolatedBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(isolatedPixelError, bestLineError[px]));
|
|
|
|
ParallelMath::ConditionalSet(selector, isolatedBetter, ParallelMath::MakeUInt15(0));
|
|
ParallelMath::ConditionalSet(selector, isTransparent[px], ParallelMath::MakeUInt15(2));
|
|
selectors = selectors | (ParallelMath::ToInt32(selector) << (px * 2));
|
|
}
|
|
|
|
bestError = ParallelMath::Min(bestError, roundBestError);
|
|
ParallelMath::ConditionalSet(bestLineColor, errorBetter, uniqueQuantizedColors[ci]);
|
|
ParallelMath::ConditionalSet(bestSelectors, errorBetter, selectors);
|
|
ParallelMath::ConditionalSet(bestTable, errorBetter, ParallelMath::MakeUInt15(table));
|
|
ParallelMath::ConditionalSet(bestIsHMode, errorBetter, useHMode);
|
|
ParallelMath::ConditionalSet(bestHModeColor2, errorBetter, packedHModeColor2);
|
|
|
|
bestIsThisMode = bestIsThisMode | errorBetter;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (ParallelMath::Extract(bestIsThisMode, block))
|
|
{
|
|
uint32_t lowBits = 0;
|
|
uint32_t highBits = 0;
|
|
|
|
uint16_t blockBestLineColor = ParallelMath::Extract(bestLineColor, block);
|
|
ParallelMath::ScalarUInt16 blockIsolatedAverageQuantized[3];
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
blockIsolatedAverageQuantized[ch] = ParallelMath::Extract(isolatedAverageQuantized[ch], block);
|
|
|
|
uint16_t blockBestTable = ParallelMath::Extract(bestTable, block);
|
|
int32_t blockBestSelectors = ParallelMath::Extract(bestSelectors, block);
|
|
|
|
ParallelMath::ScalarUInt16 lineColor[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
lineColor[ch] = (blockBestLineColor >> (10 - (ch * 5))) & 15;
|
|
|
|
if (ParallelMath::Extract(bestIsHMode, block))
|
|
{
|
|
// T mode: C1, C2+M, Transparent, C2-M
|
|
// H mode: C1+M, C1-M, Transparent, C2-M
|
|
static const ParallelMath::ScalarUInt16 selectorRemapSector[4] = { 1, 0, 1, 0 };
|
|
static const ParallelMath::ScalarUInt16 selectorRemapSign[4] = { 1, 0, 0, 1 };
|
|
|
|
// Remap selectors
|
|
ParallelMath::ScalarUInt16 signBits = 0;
|
|
ParallelMath::ScalarUInt16 sectorBits = 0;
|
|
int32_t blockBestSelectors = ParallelMath::Extract(bestSelectors, block);
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
int32_t selector = (blockBestSelectors >> (px * 2)) & 3;
|
|
sectorBits |= (selectorRemapSector[selector] << px);
|
|
signBits |= (selectorRemapSign[selector] << px);
|
|
}
|
|
|
|
ParallelMath::ScalarUInt16 blockColors[2] = { blockBestLineColor, ParallelMath::Extract(bestHModeColor2, block) };
|
|
|
|
EmitHModeBlock(outputBuffer + block * 8, blockColors, sectorBits, signBits, blockBestTable, false);
|
|
}
|
|
else
|
|
EmitTModeBlock(outputBuffer + block * 8, lineColor, blockIsolatedAverageQuantized, blockBestSelectors, blockBestTable, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
cvtt::ParallelMath::UInt15 cvtt::Internal::ETCComputer::DecodePlanarCoeff(const MUInt15 &coeff, int ch)
|
|
{
|
|
if (ch == 1)
|
|
return (coeff << 1) | (ParallelMath::RightShift(coeff, 6));
|
|
else
|
|
return (coeff << 2) | (ParallelMath::RightShift(coeff, 4));
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::EncodePlanar(uint8_t *outputBuffer, MFloat &bestError, const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const Options &options)
|
|
{
|
|
// NOTE: If it's desired to do this in another color space, the best way to do it would probably be
|
|
// to do everything in that color space and then transform it back to RGB.
|
|
|
|
// We compute H = (H-O)/4 and V= (V-O)/4 to simplify the math
|
|
|
|
// error = (x*H + y*V + O - C)^2
|
|
MFloat h[3] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
|
|
MFloat v[3] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
|
|
MFloat o[3] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
|
|
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
|
|
MFloat totalError = ParallelMath::MakeFloatZero();
|
|
MUInt15 bestCoeffs[3][3]; // [Channel][Coeff]
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
float fhh = 0.f;
|
|
float fho = 0.f;
|
|
float fhv = 0.f;
|
|
float foo = 0.f;
|
|
float fov = 0.f;
|
|
float fvv = 0.f;
|
|
MFloat fc = ParallelMath::MakeFloatZero();
|
|
MFloat fh = ParallelMath::MakeFloatZero();
|
|
MFloat fv = ParallelMath::MakeFloatZero();
|
|
MFloat fo = ParallelMath::MakeFloatZero();
|
|
|
|
float &foh = fho;
|
|
float &fvh = fhv;
|
|
float &fvo = fov;
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
float x = static_cast<float>(px % 4);
|
|
float y = static_cast<float>(px / 4);
|
|
MFloat c = isFakeBT709 ? preWeightedPixels[px][ch] : ParallelMath::ToFloat(pixels[px][ch]);
|
|
|
|
// (x*H + y*V + O - C)^2
|
|
fhh += x * x;
|
|
fhv += x * y;
|
|
fho += x;
|
|
fh = fh - c * x;
|
|
|
|
fvh += y * x;
|
|
fvv += y * y;
|
|
fvo += y;
|
|
fv = fv - c * y;
|
|
|
|
foh += x;
|
|
fov += y;
|
|
foo += 1;
|
|
fo = fo - c;
|
|
|
|
fh = fh - c * x;
|
|
fv = fv - c * y;
|
|
fo = fo - c;
|
|
fc = fc + c * c;
|
|
}
|
|
|
|
//float totalError = fhh * h * h + fho * h*o + fhv * h*v + foo * o * o + fov * o*v + fvv * v * v + fh * h + fv * v + fo * o + fc;
|
|
|
|
// error = fhh*h^2 + fho*h*o + fhv*h*v + foo*o^2 + fov*o*v + fvv*v^2 + fh*h + fv*v + fo*o + fc
|
|
// derror/dh = 2*fhh*h + fho*o + fhv*v + fh
|
|
// derror/dv = fhv*h + fov*o + 2*fvv*v + fv
|
|
// derror/do = fho*h + 2*foo*o + fov*v + fo
|
|
|
|
// Solve system of equations
|
|
// h o v 1 = 0
|
|
// -------
|
|
// d e f g R0
|
|
// i j k l R1
|
|
// m n p q R2
|
|
|
|
float d = 2.0f * fhh;
|
|
float e = fho;
|
|
float f = fhv;
|
|
MFloat gD = fh;
|
|
|
|
float i = fhv;
|
|
float j = fov;
|
|
float k = 2.0f * fvv;
|
|
MFloat lD = fv;
|
|
|
|
float m = fho;
|
|
float n = 2.0f * foo;
|
|
float p = fov;
|
|
MFloat qD = fo;
|
|
|
|
{
|
|
// Factor out first column from R1 and R2
|
|
float r0to1 = -i / d;
|
|
float r0to2 = -m / d;
|
|
|
|
// 0 j1 k1 l1D
|
|
float j1 = j + r0to1 * e;
|
|
float k1 = k + r0to1 * f;
|
|
MFloat l1D = lD + gD * r0to1;
|
|
|
|
// 0 n1 p1 q1D
|
|
float n1 = n + r0to2 * e;
|
|
float p1 = p + r0to2 * f;
|
|
MFloat q1D = qD + gD * r0to2;
|
|
|
|
// Factor out third column from R2
|
|
float r1to2 = -p1 / k1;
|
|
|
|
// 0 n2 0 q2D
|
|
float n2 = n1 + r1to2 * j1;
|
|
MFloat q2D = q1D + l1D * r1to2;
|
|
|
|
o[ch] = -q2D / n2;
|
|
|
|
// Factor out second column from R1
|
|
// 0 n2 0 q2D
|
|
|
|
float r2to1 = -j1 / n2;
|
|
|
|
// 0 0 k1 l2D
|
|
// 0 n2 0 q2D
|
|
MFloat l2D = l1D + q2D * r2to1;
|
|
|
|
float elim2 = -f / k1;
|
|
float elim1 = -e / n2;
|
|
|
|
// d 0 0 g2D
|
|
MFloat g2D = gD + l2D * elim2 + q2D * elim1;
|
|
|
|
// n2*o + q2 = 0
|
|
// o = -q2 / n2
|
|
h[ch] = -g2D / d;
|
|
v[ch] = -l2D / k1;
|
|
}
|
|
|
|
// Undo the local transformation
|
|
h[ch] = h[ch] * 4.0f + o[ch];
|
|
v[ch] = v[ch] * 4.0f + o[ch];
|
|
}
|
|
|
|
if (isFakeBT709)
|
|
{
|
|
MFloat oRGB[3];
|
|
MFloat hRGB[3];
|
|
MFloat vRGB[3];
|
|
|
|
ConvertFromFakeBT709(oRGB, o);
|
|
ConvertFromFakeBT709(hRGB, h);
|
|
ConvertFromFakeBT709(vRGB, v);
|
|
|
|
// Twiddling in fake BT.607 is a mess, just round off for now (the precision is pretty good anyway)
|
|
{
|
|
ParallelMath::RoundTowardNearestForScope rtn;
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MFloat fcoeffs[3] = { oRGB[ch], hRGB[ch], vRGB[ch] };
|
|
|
|
for (int c = 0; c < 3; c++)
|
|
{
|
|
MFloat coeff = ParallelMath::Max(ParallelMath::MakeFloatZero(), fcoeffs[c]);
|
|
if (ch == 1)
|
|
coeff = ParallelMath::Min(ParallelMath::MakeFloat(127.0f), coeff * (127.0f / 255.0f));
|
|
else
|
|
coeff = ParallelMath::Min(ParallelMath::MakeFloat(63.0f), coeff * (63.0f / 255.0f));
|
|
fcoeffs[c] = coeff;
|
|
}
|
|
|
|
for (int c = 0; c < 3; c++)
|
|
bestCoeffs[ch][c] = ParallelMath::RoundAndConvertToU15(fcoeffs[c], &rtn);
|
|
}
|
|
}
|
|
|
|
MUInt15 reconstructed[16][3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 dO = DecodePlanarCoeff(bestCoeffs[ch][0], ch);
|
|
MUInt15 dH = DecodePlanarCoeff(bestCoeffs[ch][1], ch);
|
|
MUInt15 dV = DecodePlanarCoeff(bestCoeffs[ch][2], ch);
|
|
|
|
MSInt16 hMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dH) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
|
|
MSInt16 vMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dV) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
|
|
|
|
MFloat error = ParallelMath::MakeFloatZero();
|
|
|
|
MSInt16 addend = ParallelMath::LosslessCast<MSInt16>::Cast(dO << 2) + 2;
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MUInt15 pxv = ParallelMath::MakeUInt15(px);
|
|
MSInt16 x = ParallelMath::LosslessCast<MSInt16>::Cast(pxv & ParallelMath::MakeUInt15(3));
|
|
MSInt16 y = ParallelMath::LosslessCast<MSInt16>::Cast(ParallelMath::RightShift(pxv, 2));
|
|
|
|
MSInt16 interpolated = ParallelMath::RightShift(ParallelMath::CompactMultiply(x, hMinusO) + ParallelMath::CompactMultiply(y, vMinusO) + addend, 2);
|
|
MUInt15 clampedLow = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), interpolated));
|
|
reconstructed[px][ch] = ParallelMath::Min(ParallelMath::MakeUInt15(255), clampedLow);
|
|
}
|
|
}
|
|
|
|
totalError = ParallelMath::MakeFloatZero();
|
|
for (int px = 0; px < 16; px++)
|
|
totalError = totalError + ComputeErrorFakeBT709(reconstructed[px], preWeightedPixels[px]);
|
|
}
|
|
else
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MFloat fcoeffs[3] = { o[ch], h[ch], v[ch] };
|
|
MUInt15 coeffRanges[3][2];
|
|
|
|
for (int c = 0; c < 3; c++)
|
|
{
|
|
MFloat coeff = ParallelMath::Max(ParallelMath::MakeFloatZero(), fcoeffs[c]);
|
|
if (ch == 1)
|
|
coeff = ParallelMath::Min(ParallelMath::MakeFloat(127.0f), coeff * (127.0f / 255.0f));
|
|
else
|
|
coeff = ParallelMath::Min(ParallelMath::MakeFloat(63.0f), coeff * (63.0f / 255.0f));
|
|
fcoeffs[c] = coeff;
|
|
}
|
|
|
|
{
|
|
ParallelMath::RoundDownForScope rd;
|
|
for (int c = 0; c < 3; c++)
|
|
coeffRanges[c][0] = ParallelMath::RoundAndConvertToU15(fcoeffs[c], &rd);
|
|
}
|
|
|
|
{
|
|
ParallelMath::RoundUpForScope ru;
|
|
for (int c = 0; c < 3; c++)
|
|
coeffRanges[c][1] = ParallelMath::RoundAndConvertToU15(fcoeffs[c], &ru);
|
|
}
|
|
|
|
MFloat bestChannelError = ParallelMath::MakeFloat(FLT_MAX);
|
|
for (int io = 0; io < 2; io++)
|
|
{
|
|
MUInt15 dO = DecodePlanarCoeff(coeffRanges[0][io], ch);
|
|
|
|
for (int ih = 0; ih < 2; ih++)
|
|
{
|
|
MUInt15 dH = DecodePlanarCoeff(coeffRanges[1][ih], ch);
|
|
MSInt16 hMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dH) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
|
|
|
|
for (int iv = 0; iv < 2; iv++)
|
|
{
|
|
MUInt15 dV = DecodePlanarCoeff(coeffRanges[2][iv], ch);
|
|
MSInt16 vMinusO = ParallelMath::LosslessCast<MSInt16>::Cast(dV) - ParallelMath::LosslessCast<MSInt16>::Cast(dO);
|
|
|
|
MFloat error = ParallelMath::MakeFloatZero();
|
|
|
|
MSInt16 addend = ParallelMath::LosslessCast<MSInt16>::Cast(dO << 2) + 2;
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MUInt15 pxv = ParallelMath::MakeUInt15(px);
|
|
MSInt16 x = ParallelMath::LosslessCast<MSInt16>::Cast(pxv & ParallelMath::MakeUInt15(3));
|
|
MSInt16 y = ParallelMath::LosslessCast<MSInt16>::Cast(ParallelMath::RightShift(pxv, 2));
|
|
|
|
MSInt16 interpolated = ParallelMath::RightShift(ParallelMath::CompactMultiply(x, hMinusO) + ParallelMath::CompactMultiply(y, vMinusO) + addend, 2);
|
|
MUInt15 clampedLow = ParallelMath::ToUInt15(ParallelMath::Max(ParallelMath::MakeSInt16(0), interpolated));
|
|
MUInt15 dec = ParallelMath::Min(ParallelMath::MakeUInt15(255), clampedLow);
|
|
|
|
MSInt16 delta = ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][ch]) - ParallelMath::LosslessCast<MSInt16>::Cast(dec);
|
|
|
|
MFloat deltaF = ParallelMath::ToFloat(delta);
|
|
error = error + deltaF * deltaF;
|
|
}
|
|
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestChannelError));
|
|
if (ParallelMath::AnySet(errorBetter))
|
|
{
|
|
bestChannelError = ParallelMath::Min(error, bestChannelError);
|
|
ParallelMath::ConditionalSet(bestCoeffs[ch][0], errorBetter, coeffRanges[0][io]);
|
|
ParallelMath::ConditionalSet(bestCoeffs[ch][1], errorBetter, coeffRanges[1][ih]);
|
|
ParallelMath::ConditionalSet(bestCoeffs[ch][2], errorBetter, coeffRanges[2][iv]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!isUniform)
|
|
{
|
|
switch (ch)
|
|
{
|
|
case 0:
|
|
bestChannelError = bestChannelError * (options.redWeight * options.redWeight);
|
|
break;
|
|
case 1:
|
|
bestChannelError = bestChannelError * (options.greenWeight * options.greenWeight);
|
|
break;
|
|
case 2:
|
|
bestChannelError = bestChannelError * (options.blueWeight * options.blueWeight);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
totalError = totalError + bestChannelError;
|
|
}
|
|
}
|
|
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(totalError, bestError));
|
|
if (ParallelMath::AnySet(errorBetter))
|
|
{
|
|
bestError = ParallelMath::Min(bestError, totalError);
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (!ParallelMath::Extract(errorBetter, block))
|
|
continue;
|
|
|
|
int ro = ParallelMath::Extract(bestCoeffs[0][0], block);
|
|
int rh = ParallelMath::Extract(bestCoeffs[0][1], block);
|
|
int rv = ParallelMath::Extract(bestCoeffs[0][2], block);
|
|
|
|
int go = ParallelMath::Extract(bestCoeffs[1][0], block);
|
|
int gh = ParallelMath::Extract(bestCoeffs[1][1], block);
|
|
int gv = ParallelMath::Extract(bestCoeffs[1][2], block);
|
|
|
|
int bo = ParallelMath::Extract(bestCoeffs[2][0], block);
|
|
int bh = ParallelMath::Extract(bestCoeffs[2][1], block);
|
|
int bv = ParallelMath::Extract(bestCoeffs[2][2], block);
|
|
|
|
int go1 = go >> 6;
|
|
int go2 = go & 63;
|
|
|
|
int bo1 = bo >> 5;
|
|
int bo2 = (bo >> 3) & 3;
|
|
int bo3 = bo & 7;
|
|
|
|
int rh1 = (rh >> 1);
|
|
int rh2 = rh & 1;
|
|
|
|
int fakeR = ro >> 2;
|
|
int fakeDR = go1 | ((ro & 3) << 1);
|
|
|
|
int fakeG = (go2 >> 2);
|
|
int fakeDG = ((go2 & 3) << 1) | bo1;
|
|
|
|
int fakeB = bo2;
|
|
int fakeDB = bo3 >> 1;
|
|
|
|
uint32_t highBits = 0;
|
|
uint32_t lowBits = 0;
|
|
|
|
// Avoid overflowing R
|
|
if ((fakeDR & 4) != 0 && fakeR + fakeDR < 8)
|
|
highBits |= 1 << (63 - 32);
|
|
|
|
// Avoid overflowing G
|
|
if ((fakeDG & 4) != 0 && fakeG + fakeDG < 8)
|
|
highBits |= 1 << (55 - 32);
|
|
|
|
// Overflow B
|
|
if (fakeB + fakeDB < 4)
|
|
{
|
|
// Overflow low
|
|
highBits |= 1 << (42 - 32);
|
|
}
|
|
else
|
|
{
|
|
// Overflow high
|
|
highBits |= 7 << (45 - 32);
|
|
}
|
|
|
|
highBits |= ro << (57 - 32);
|
|
highBits |= go1 << (56 - 32);
|
|
highBits |= go2 << (49 - 32);
|
|
highBits |= bo1 << (48 - 32);
|
|
highBits |= bo2 << (43 - 32);
|
|
highBits |= bo3 << (39 - 32);
|
|
highBits |= rh1 << (34 - 32);
|
|
highBits |= 1 << (33 - 32);
|
|
highBits |= rh2 << (32 - 32);
|
|
|
|
lowBits |= gh << 25;
|
|
lowBits |= bh << 19;
|
|
lowBits |= rv << 13;
|
|
lowBits |= gv << 6;
|
|
lowBits |= bv << 0;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
outputBuffer[block * 8 + i] = (highBits >> (24 - i * 8)) & 0xff;
|
|
for (int i = 0; i < 4; i++)
|
|
outputBuffer[block * 8 + i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::CompressETC2Block(uint8_t *outputBuffer, const PixelBlockU8 *pixelBlocks, ETC2CompressionData *compressionData, const Options &options, bool punchthroughAlpha)
|
|
{
|
|
ParallelMath::Int16CompFlag pixelIsTransparent[16];
|
|
ParallelMath::Int16CompFlag anyTransparent = ParallelMath::MakeBoolInt16(false);
|
|
ParallelMath::Int16CompFlag allTransparent = ParallelMath::MakeBoolInt16(true);
|
|
|
|
if (punchthroughAlpha)
|
|
{
|
|
const float fThreshold = std::max<float>(std::min<float>(1.0f, options.threshold), 0.0f) * 255.0f;
|
|
|
|
// +1.0f is intentional, we want to take the next valid integer (even if it's 256) since everything else lower is transparent
|
|
MUInt15 threshold = ParallelMath::MakeUInt15(static_cast<uint16_t>(std::floor(fThreshold + 1.0f)));
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MUInt15 alpha;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
ParallelMath::PutUInt15(alpha, block, pixelBlocks[block].m_pixels[px][3]);
|
|
|
|
ParallelMath::Int16CompFlag isTransparent = ParallelMath::Less(alpha, threshold);
|
|
anyTransparent = (anyTransparent | isTransparent);
|
|
allTransparent = (allTransparent & isTransparent);
|
|
pixelIsTransparent[px] = isTransparent;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int px = 0; px < 16; px++)
|
|
pixelIsTransparent[px] = ParallelMath::MakeBoolInt16(false);
|
|
|
|
allTransparent = anyTransparent = ParallelMath::MakeBoolInt16(false);
|
|
}
|
|
|
|
MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
|
|
|
|
ETC2CompressionDataInternal* internalData = static_cast<ETC2CompressionDataInternal*>(compressionData);
|
|
|
|
MUInt15 pixels[16][3];
|
|
MFloat preWeightedPixels[16][3];
|
|
ExtractBlocks(pixels, preWeightedPixels, pixelBlocks, options);
|
|
|
|
if (ParallelMath::AnySet(anyTransparent))
|
|
{
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
ParallelMath::Int16CompFlag flag = pixelIsTransparent[px];
|
|
ParallelMath::FloatCompFlag fflag = ParallelMath::Int16FlagToFloat(flag);
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
ParallelMath::ConditionalSet(pixels[px][ch], flag, ParallelMath::MakeUInt15(0));
|
|
ParallelMath::ConditionalSet(preWeightedPixels[px][ch], fflag, ParallelMath::MakeFloat(0.0f));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!ParallelMath::AllSet(allTransparent))
|
|
EncodePlanar(outputBuffer, bestError, pixels, preWeightedPixels, options);
|
|
|
|
MFloat chromaDelta[16][2];
|
|
|
|
MUInt15 numOpaque = ParallelMath::MakeUInt15(16);
|
|
for (int px = 0; px < 16; px++)
|
|
numOpaque = numOpaque - ParallelMath::SelectOrZero(pixelIsTransparent[px], ParallelMath::MakeUInt15(1));
|
|
|
|
if (options.flags & cvtt::Flags::Uniform)
|
|
{
|
|
MSInt16 chromaCoordinates3[16][2];
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
chromaCoordinates3[px][0] = ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][0]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][2]);
|
|
chromaCoordinates3[px][1] = ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][0]) - ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][1] << 1) + ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px][2]);
|
|
}
|
|
|
|
MSInt16 chromaCoordinateCentroid[2] = { ParallelMath::MakeSInt16(0), ParallelMath::MakeSInt16(0) };
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 2; ch++)
|
|
chromaCoordinateCentroid[ch] = chromaCoordinateCentroid[ch] + chromaCoordinates3[px][ch];
|
|
}
|
|
|
|
if (punchthroughAlpha)
|
|
{
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 2; ch++)
|
|
{
|
|
MUInt15 chromaCoordinateMultiplied = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(chromaCoordinates3[px][ch], numOpaque));
|
|
MSInt16 delta = ParallelMath::LosslessCast<MSInt16>::Cast(chromaCoordinateMultiplied) - chromaCoordinateCentroid[ch];
|
|
chromaDelta[px][ch] = ParallelMath::ToFloat(delta);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 2; ch++)
|
|
chromaDelta[px][ch] = ParallelMath::ToFloat((chromaCoordinates3[px][ch] << 4) - chromaCoordinateCentroid[ch]);
|
|
}
|
|
}
|
|
|
|
const MFloat rcpSqrt3 = ParallelMath::MakeFloat(0.57735026918962576450914878050196f);
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
chromaDelta[px][1] = chromaDelta[px][1] * rcpSqrt3;
|
|
}
|
|
else
|
|
{
|
|
const float chromaAxis0[3] = { internalData->m_chromaSideAxis0[0], internalData->m_chromaSideAxis0[1], internalData->m_chromaSideAxis0[2] };
|
|
const float chromaAxis1[3] = { internalData->m_chromaSideAxis1[0], internalData->m_chromaSideAxis1[1], internalData->m_chromaSideAxis1[2] };
|
|
|
|
MFloat chromaCoordinates3[16][2];
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
const MFloat &px0 = preWeightedPixels[px][0];
|
|
const MFloat &px1 = preWeightedPixels[px][1];
|
|
const MFloat &px2 = preWeightedPixels[px][2];
|
|
|
|
chromaCoordinates3[px][0] = px0 * chromaAxis0[0] + px1 * chromaAxis0[1] + px2 * chromaAxis0[2];
|
|
chromaCoordinates3[px][1] = px0 * chromaAxis1[0] + px1 * chromaAxis1[1] + px2 * chromaAxis1[2];
|
|
}
|
|
|
|
MFloat chromaCoordinateCentroid[2] = { ParallelMath::MakeFloatZero(), ParallelMath::MakeFloatZero() };
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 2; ch++)
|
|
chromaCoordinateCentroid[ch] = chromaCoordinateCentroid[ch] + chromaCoordinates3[px][ch];
|
|
}
|
|
|
|
if (punchthroughAlpha)
|
|
{
|
|
const MFloat numOpaqueF = ParallelMath::ToFloat(numOpaque);
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 2; ch++)
|
|
{
|
|
MFloat chromaCoordinateMultiplied = chromaCoordinates3[px][ch] * numOpaqueF;
|
|
MFloat delta = chromaCoordinateMultiplied - chromaCoordinateCentroid[ch];
|
|
chromaDelta[px][ch] = delta;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 2; ch++)
|
|
chromaDelta[px][ch] = chromaCoordinates3[px][ch] * 16.0f - chromaCoordinateCentroid[ch];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
MFloat covXX = ParallelMath::MakeFloatZero();
|
|
MFloat covYY = ParallelMath::MakeFloatZero();
|
|
MFloat covXY = ParallelMath::MakeFloatZero();
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MFloat nx = chromaDelta[px][0];
|
|
MFloat ny = chromaDelta[px][1];
|
|
|
|
covXX = covXX + nx * nx;
|
|
covYY = covYY + ny * ny;
|
|
covXY = covXY + nx * ny;
|
|
}
|
|
|
|
MFloat halfTrace = (covXX + covYY) * 0.5f;
|
|
MFloat det = covXX * covYY - covXY * covXY;
|
|
|
|
MFloat mm = ParallelMath::Sqrt(ParallelMath::Max(ParallelMath::MakeFloatZero(), halfTrace * halfTrace - det));
|
|
|
|
MFloat ev = halfTrace + mm;
|
|
|
|
MFloat dx = (covYY - ev + covXY);
|
|
MFloat dy = -(covXX - ev + covXY);
|
|
|
|
// If evenly distributed, pick an arbitrary plane
|
|
ParallelMath::FloatCompFlag allZero = ParallelMath::Equal(dx, ParallelMath::MakeFloatZero()) & ParallelMath::Equal(dy, ParallelMath::MakeFloatZero());
|
|
ParallelMath::ConditionalSet(dx, allZero, ParallelMath::MakeFloat(1.f));
|
|
|
|
ParallelMath::Int16CompFlag sectorAssignments[16];
|
|
for (int px = 0; px < 16; px++)
|
|
sectorAssignments[px] = ParallelMath::FloatFlagToInt16(ParallelMath::Less(chromaDelta[px][0] * dx + chromaDelta[px][1] * dy, ParallelMath::MakeFloatZero()));
|
|
|
|
if (!ParallelMath::AllSet(allTransparent))
|
|
{
|
|
EncodeTMode(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, options);
|
|
|
|
// Flip sector assignments
|
|
for (int px = 0; px < 16; px++)
|
|
sectorAssignments[px] = ParallelMath::Not(sectorAssignments[px]);
|
|
|
|
EncodeTMode(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, options);
|
|
|
|
EncodeHMode(outputBuffer, bestError, sectorAssignments, pixels, internalData->m_h, preWeightedPixels, options);
|
|
|
|
CompressETC1BlockInternal(bestError, outputBuffer, pixels, preWeightedPixels, internalData->m_drs, options, true);
|
|
}
|
|
|
|
if (ParallelMath::AnySet(anyTransparent))
|
|
{
|
|
if (!ParallelMath::AllSet(allTransparent))
|
|
{
|
|
// Flip sector assignments
|
|
for (int px = 0; px < 16; px++)
|
|
sectorAssignments[px] = ParallelMath::Not(sectorAssignments[px]);
|
|
}
|
|
|
|
// Reset the error of any transparent blocks to max and retry with punchthrough modes
|
|
ParallelMath::ConditionalSet(bestError, ParallelMath::Int16FlagToFloat(anyTransparent), ParallelMath::MakeFloat(FLT_MAX));
|
|
|
|
EncodeVirtualTModePunchthrough(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, pixelIsTransparent, anyTransparent, allTransparent, options);
|
|
|
|
// Flip sector assignments
|
|
for (int px = 0; px < 16; px++)
|
|
sectorAssignments[px] = ParallelMath::Not(sectorAssignments[px]);
|
|
|
|
EncodeVirtualTModePunchthrough(outputBuffer, bestError, sectorAssignments, pixels, preWeightedPixels, pixelIsTransparent, anyTransparent, allTransparent, options);
|
|
|
|
CompressETC1PunchthroughBlockInternal(bestError, outputBuffer, pixels, preWeightedPixels, pixelIsTransparent, static_cast<ETC2CompressionDataInternal*>(compressionData)->m_drs, options);
|
|
}
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::CompressETC2AlphaBlock(uint8_t *outputBuffer, const PixelBlockU8 *pixelBlocks, const Options &options)
|
|
{
|
|
MUInt15 pixels[16];
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
ParallelMath::PutUInt15(pixels[px], block, pixelBlocks[block].m_pixels[px][3]);
|
|
}
|
|
|
|
CompressETC2AlphaBlockInternal(outputBuffer, pixels, false, false, options);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::CompressETC2AlphaBlockInternal(uint8_t *outputBuffer, const MUInt15 pixels[16], bool is11Bit, bool isSigned, const Options &options)
|
|
{
|
|
MUInt15 minAlpha = ParallelMath::MakeUInt15(is11Bit ? 2047 : 255);
|
|
MUInt15 maxAlpha = ParallelMath::MakeUInt15(0);
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
minAlpha = ParallelMath::Min(minAlpha, pixels[px]);
|
|
maxAlpha = ParallelMath::Max(maxAlpha, pixels[px]);
|
|
}
|
|
|
|
MUInt15 alphaSpan = maxAlpha - minAlpha;
|
|
MUInt15 alphaSpanMidpointTimes2 = maxAlpha + minAlpha;
|
|
|
|
MUInt31 bestTotalError = ParallelMath::MakeUInt31(0x7fffffff);
|
|
MUInt15 bestTableIndex = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestBaseCodeword = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestMultiplier = ParallelMath::MakeUInt15(0);
|
|
MUInt15 bestIndexes[16];
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
bestIndexes[px] = ParallelMath::MakeUInt15(0);
|
|
|
|
const int numAlphaRanges = 10;
|
|
for (uint16_t tableIndex = 0; tableIndex < 16; tableIndex++)
|
|
{
|
|
for (int r = 0; r < numAlphaRanges; r++)
|
|
{
|
|
int subrange = r % 3;
|
|
int mainRange = r / 3;
|
|
|
|
int16_t maxOffset = Tables::ETC2::g_alphaModifierTablePositive[tableIndex][3 - mainRange - (subrange & 1)];
|
|
int16_t minOffset = -Tables::ETC2::g_alphaModifierTablePositive[tableIndex][3 - mainRange - ((subrange >> 1) & 1)] - 1;
|
|
uint16_t offsetSpan = static_cast<uint16_t>(maxOffset - minOffset);
|
|
|
|
MSInt16 vminOffset = ParallelMath::MakeSInt16(minOffset);
|
|
MUInt15 vmaxOffset = ParallelMath::MakeUInt15(maxOffset);
|
|
MUInt15 voffsetSpan = ParallelMath::MakeUInt15(offsetSpan);
|
|
|
|
MUInt15 minMultiplier = ParallelMath::MakeUInt15(0);
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t singleAlphaSpan = ParallelMath::Extract(alphaSpan, block);
|
|
|
|
uint16_t lowMultiplier = singleAlphaSpan / offsetSpan;
|
|
ParallelMath::PutUInt15(minMultiplier, block, lowMultiplier);
|
|
}
|
|
|
|
if (is11Bit)
|
|
{
|
|
// Clamps this to valid multipliers under 15 and rounds down to nearest multiple of 8
|
|
minMultiplier = ParallelMath::Min(minMultiplier, ParallelMath::MakeUInt15(112)) & ParallelMath::MakeUInt15(120);
|
|
}
|
|
else
|
|
{
|
|
// We cap at 1 and 14 so both multipliers are valid and dividable
|
|
// Cases where offset span is 0 should be caught by multiplier 1 of table 13
|
|
minMultiplier = ParallelMath::Max(ParallelMath::Min(minMultiplier, ParallelMath::MakeUInt15(14)), ParallelMath::MakeUInt15(1));
|
|
}
|
|
|
|
for (uint16_t multiplierOffset = 0; multiplierOffset < 2; multiplierOffset++)
|
|
{
|
|
MUInt15 multiplier = minMultiplier;
|
|
|
|
if (is11Bit)
|
|
{
|
|
if (multiplierOffset == 1)
|
|
multiplier = multiplier + ParallelMath::MakeUInt15(8);
|
|
else
|
|
multiplier = ParallelMath::Max(multiplier, ParallelMath::MakeUInt15(1));
|
|
}
|
|
else
|
|
{
|
|
if (multiplierOffset == 1)
|
|
multiplier = multiplier + ParallelMath::MakeUInt15(1);
|
|
}
|
|
|
|
MSInt16 multipliedMinOffset = ParallelMath::CompactMultiply(ParallelMath::LosslessCast<MSInt16>::Cast(multiplier), vminOffset);
|
|
MUInt15 multipliedMaxOffset = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(multiplier, vmaxOffset));
|
|
|
|
// codeword = (maxOffset + minOffset + minAlpha + maxAlpha) / 2
|
|
MSInt16 unclampedBaseAlphaTimes2 = ParallelMath::LosslessCast<MSInt16>::Cast(alphaSpanMidpointTimes2) - ParallelMath::LosslessCast<MSInt16>::Cast(multipliedMaxOffset) - multipliedMinOffset;
|
|
|
|
MUInt15 baseAlpha;
|
|
if (is11Bit)
|
|
{
|
|
// In unsigned, 4 is added to the unquantized alpha, so compensating for that cancels the 4 we have to add to do rounding.
|
|
if (isSigned)
|
|
unclampedBaseAlphaTimes2 = unclampedBaseAlphaTimes2 + ParallelMath::MakeSInt16(8);
|
|
|
|
// -128 is illegal for some reason
|
|
MSInt16 minBaseAlphaTimes2 = isSigned ? ParallelMath::MakeSInt16(16) : ParallelMath::MakeSInt16(0);
|
|
|
|
MUInt15 clampedBaseAlphaTimes2 = ParallelMath::Min(ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(unclampedBaseAlphaTimes2, minBaseAlphaTimes2)), ParallelMath::MakeUInt15(4095));
|
|
baseAlpha = ParallelMath::RightShift(clampedBaseAlphaTimes2, 1) & ParallelMath::MakeUInt15(2040);
|
|
|
|
if (!isSigned)
|
|
baseAlpha = baseAlpha + ParallelMath::MakeUInt15(4);
|
|
}
|
|
else
|
|
{
|
|
MUInt15 clampedBaseAlphaTimes2 = ParallelMath::Min(ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(unclampedBaseAlphaTimes2, ParallelMath::MakeSInt16(0))), ParallelMath::MakeUInt15(510));
|
|
baseAlpha = ParallelMath::RightShift(clampedBaseAlphaTimes2 + ParallelMath::MakeUInt15(1), 1);
|
|
}
|
|
|
|
MUInt15 indexes[16];
|
|
MUInt31 totalError = ParallelMath::MakeUInt31(0);
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MUInt15 quantizedValues;
|
|
QuantizeETC2Alpha(tableIndex, pixels[px], baseAlpha, multiplier, is11Bit, isSigned, indexes[px], quantizedValues);
|
|
|
|
if (is11Bit)
|
|
{
|
|
MSInt16 delta = ParallelMath::LosslessCast<MSInt16>::Cast(quantizedValues) - ParallelMath::LosslessCast<MSInt16>::Cast(pixels[px]);
|
|
MSInt32 deltaSq = ParallelMath::XMultiply(delta, delta);
|
|
totalError = totalError + ParallelMath::LosslessCast<MUInt31>::Cast(deltaSq);
|
|
}
|
|
else
|
|
totalError = totalError + ParallelMath::ToUInt31(ParallelMath::SqDiffUInt8(quantizedValues, pixels[px]));
|
|
}
|
|
|
|
ParallelMath::Int16CompFlag isBetter = ParallelMath::Int32FlagToInt16(ParallelMath::Less(totalError, bestTotalError));
|
|
if (ParallelMath::AnySet(isBetter))
|
|
{
|
|
ParallelMath::ConditionalSet(bestTotalError, isBetter, totalError);
|
|
ParallelMath::ConditionalSet(bestTableIndex, isBetter, ParallelMath::MakeUInt15(tableIndex));
|
|
ParallelMath::ConditionalSet(bestBaseCodeword, isBetter, baseAlpha);
|
|
ParallelMath::ConditionalSet(bestMultiplier, isBetter, multiplier);
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
ParallelMath::ConditionalSet(bestIndexes[px], isBetter, indexes[px]);
|
|
}
|
|
|
|
// TODO: Do one refine pass
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is11Bit)
|
|
{
|
|
bestMultiplier = ParallelMath::RightShift(bestMultiplier, 3);
|
|
|
|
if (isSigned)
|
|
bestBaseCodeword = bestBaseCodeword ^ ParallelMath::MakeUInt15(0x80);
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint8_t *output = outputBuffer + block * 8;
|
|
|
|
output[0] = static_cast<uint8_t>(ParallelMath::Extract(bestBaseCodeword, block));
|
|
|
|
ParallelMath::ScalarUInt16 multiplier = ParallelMath::Extract(bestMultiplier, block);
|
|
ParallelMath::ScalarUInt16 tableIndex = ParallelMath::Extract(bestTableIndex, block);
|
|
|
|
output[1] = static_cast<uint8_t>((multiplier << 4) | tableIndex);
|
|
|
|
static const int pixelSelectorOrder[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
|
|
|
|
ParallelMath::ScalarUInt16 indexes[16];
|
|
for (int px = 0; px < 16; px++)
|
|
indexes[pixelSelectorOrder[px]] = ParallelMath::Extract(bestIndexes[px], block);
|
|
|
|
int outputOffset = 2;
|
|
int outputBits = 0;
|
|
int numOutputBits = 0;
|
|
for (int s = 0; s < 16; s++)
|
|
{
|
|
outputBits = (outputBits << 3) | indexes[s];
|
|
numOutputBits += 3;
|
|
|
|
if (numOutputBits >= 8)
|
|
{
|
|
output[outputOffset++] = static_cast<uint8_t>(outputBits >> (numOutputBits - 8));
|
|
numOutputBits -= 8;
|
|
|
|
outputBits &= ((1 << numOutputBits) - 1);
|
|
}
|
|
}
|
|
|
|
assert(outputOffset == 8 && numOutputBits == 0);
|
|
}
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::CompressEACBlock(uint8_t *outputBuffer, const PixelBlockScalarS16 *inputBlocks, bool isSigned, const Options &options)
|
|
{
|
|
MUInt15 pixels[16];
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
MSInt16 adjustedPixel;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
ParallelMath::PutSInt16(adjustedPixel, block, inputBlocks[block].m_pixels[px]);
|
|
|
|
// We use a slightly shifted range here so we can keep the unquantized base color in a UInt15
|
|
// That is, signed range is 1..2047, and unsigned range is 0..2047
|
|
if (isSigned)
|
|
{
|
|
adjustedPixel = ParallelMath::Min(adjustedPixel, ParallelMath::MakeSInt16(1023)) + ParallelMath::MakeSInt16(1024);
|
|
adjustedPixel = ParallelMath::Max(ParallelMath::MakeSInt16(1), adjustedPixel);
|
|
}
|
|
else
|
|
{
|
|
adjustedPixel = ParallelMath::Min(adjustedPixel, ParallelMath::MakeSInt16(2047));
|
|
adjustedPixel = ParallelMath::Max(ParallelMath::MakeSInt16(0), adjustedPixel);
|
|
}
|
|
|
|
|
|
pixels[px] = ParallelMath::LosslessCast<MUInt15>::Cast(adjustedPixel);
|
|
}
|
|
|
|
CompressETC2AlphaBlockInternal(outputBuffer, pixels, true, isSigned, options);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::CompressETC1Block(uint8_t *outputBuffer, const PixelBlockU8 *inputBlocks, ETC1CompressionData *compressionData, const Options &options)
|
|
{
|
|
DifferentialResolveStorage &drs = static_cast<ETC1CompressionDataInternal*>(compressionData)->m_drs;
|
|
MFloat bestTotalError = ParallelMath::MakeFloat(FLT_MAX);
|
|
|
|
MUInt15 pixels[16][3];
|
|
MFloat preWeightedPixels[16][3];
|
|
ExtractBlocks(pixels, preWeightedPixels, inputBlocks, options);
|
|
|
|
CompressETC1BlockInternal(bestTotalError, outputBuffer, pixels, preWeightedPixels, drs, options, false);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ExtractBlocks(MUInt15 pixels[16][3], MFloat preWeightedPixels[16][3], const PixelBlockU8 *inputBlocks, const Options &options)
|
|
{
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
bool isUniform = ((options.flags & cvtt::Flags::Uniform) != 0);
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
ParallelMath::PutUInt15(pixels[px][ch], block, inputBlocks[block].m_pixels[px][ch]);
|
|
}
|
|
|
|
if (isFakeBT709)
|
|
ConvertToFakeBT709(preWeightedPixels[px], pixels[px]);
|
|
else if (isUniform)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
preWeightedPixels[px][ch] = ParallelMath::ToFloat(pixels[px][ch]);
|
|
}
|
|
else
|
|
{
|
|
preWeightedPixels[px][0] = ParallelMath::ToFloat(pixels[px][0]) * options.redWeight;
|
|
preWeightedPixels[px][1] = ParallelMath::ToFloat(pixels[px][1]) * options.greenWeight;
|
|
preWeightedPixels[px][2] = ParallelMath::ToFloat(pixels[px][2]) * options.blueWeight;
|
|
}
|
|
}
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ResolveHalfBlockFakeBT709RoundingAccurate(MUInt15 quantized[3], const MUInt15 sectorCumulative[3], bool isDifferential)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
const MUInt15& cu15 = sectorCumulative[ch];
|
|
|
|
if (isDifferential)
|
|
{
|
|
//quantized[ch] = (cu * 31 + (cu >> 3)) >> 11;
|
|
quantized[ch] = ParallelMath::ToUInt15(
|
|
ParallelMath::RightShift(
|
|
(ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3))
|
|
, 11)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
//quantized[ch] = (cu * 30 + (cu >> 3)) >> 12;
|
|
quantized[ch] = ParallelMath::ToUInt15(
|
|
ParallelMath::RightShift(
|
|
(ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15 << 1) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3))
|
|
, 12)
|
|
);
|
|
}
|
|
}
|
|
|
|
MFloat lowOctantRGBFloat[3];
|
|
MFloat highOctantRGBFloat[3];
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 unquantized;
|
|
MUInt15 unquantizedNext;
|
|
if (isDifferential)
|
|
{
|
|
unquantized = (quantized[ch] << 3) | ParallelMath::RightShift(quantized[ch], 2);
|
|
MUInt15 quantizedNext = ParallelMath::Min(ParallelMath::MakeUInt15(31), quantized[ch] + ParallelMath::MakeUInt15(1));
|
|
unquantizedNext = (quantizedNext << 3) | ParallelMath::RightShift(quantizedNext, 2);
|
|
}
|
|
else
|
|
{
|
|
unquantized = (quantized[ch] << 4) | quantized[ch];
|
|
unquantizedNext = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantized + ParallelMath::MakeUInt15(17));
|
|
}
|
|
lowOctantRGBFloat[ch] = ParallelMath::ToFloat(unquantized << 3);
|
|
highOctantRGBFloat[ch] = ParallelMath::ToFloat(unquantizedNext << 3);
|
|
}
|
|
|
|
MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
|
|
MUInt15 bestOctant = ParallelMath::MakeUInt15(0);
|
|
|
|
MFloat cumulativeYUV[3];
|
|
ConvertToFakeBT709(cumulativeYUV, sectorCumulative);
|
|
|
|
for (uint16_t octant = 0; octant < 8; octant++)
|
|
{
|
|
const MFloat &r = (octant & 1) ? highOctantRGBFloat[0] : lowOctantRGBFloat[0];
|
|
const MFloat &g = (octant & 2) ? highOctantRGBFloat[1] : lowOctantRGBFloat[1];
|
|
const MFloat &b = (octant & 4) ? highOctantRGBFloat[2] : lowOctantRGBFloat[2];
|
|
|
|
MFloat octantYUV[3];
|
|
ConvertToFakeBT709(octantYUV, r, g, b);
|
|
|
|
MFloat delta[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
delta[ch] = octantYUV[ch] - cumulativeYUV[ch];
|
|
|
|
MFloat error = delta[0] * delta[0] + delta[1] + delta[1] + delta[2] * delta[2];
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestError));
|
|
ParallelMath::ConditionalSet(bestOctant, errorBetter, ParallelMath::MakeUInt15(octant));
|
|
bestError = ParallelMath::Min(error, bestError);
|
|
}
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
quantized[ch] = quantized[ch] + (ParallelMath::RightShift(bestOctant, ch) & ParallelMath::MakeUInt15(1));
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ResolveHalfBlockFakeBT709RoundingFast(MUInt15 quantized[3], const MUInt15 sectorCumulative[3], bool isDifferential)
|
|
{
|
|
// sectorCumulative range is 0..2040 (11 bits)
|
|
MUInt15 roundingOffset = ParallelMath::MakeUInt15(0);
|
|
|
|
MUInt15 rOffset;
|
|
MUInt15 gOffset;
|
|
MUInt15 bOffset;
|
|
MUInt15 quantizedBase[3];
|
|
MUInt15 upperBound;
|
|
|
|
MUInt15 sectorCumulativeFillIn[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
sectorCumulativeFillIn[ch] = sectorCumulative[ch] + ParallelMath::RightShift(sectorCumulative[ch], 8);
|
|
|
|
if (isDifferential)
|
|
{
|
|
rOffset = (sectorCumulativeFillIn[0] << 6) & ParallelMath::MakeUInt15(0xf00);
|
|
gOffset = (sectorCumulativeFillIn[1] << 4) & ParallelMath::MakeUInt15(0x0f0);
|
|
bOffset = ParallelMath::RightShift(sectorCumulativeFillIn[2], 2) & ParallelMath::MakeUInt15(0x00f);
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
quantizedBase[ch] = ParallelMath::RightShift(sectorCumulativeFillIn[ch], 6);
|
|
|
|
upperBound = ParallelMath::MakeUInt15(31);
|
|
}
|
|
else
|
|
{
|
|
rOffset = (sectorCumulativeFillIn[0] << 5) & ParallelMath::MakeUInt15(0xf00);
|
|
gOffset = (sectorCumulativeFillIn[1] << 1) & ParallelMath::MakeUInt15(0x0f0);
|
|
bOffset = ParallelMath::RightShift(sectorCumulativeFillIn[2], 3) & ParallelMath::MakeUInt15(0x00f);
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
quantizedBase[ch] = ParallelMath::RightShift(sectorCumulativeFillIn[ch], 7);
|
|
|
|
upperBound = ParallelMath::MakeUInt15(15);
|
|
}
|
|
|
|
MUInt15 lookupIndex = (rOffset | gOffset | bOffset);
|
|
|
|
MUInt15 octant;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
ParallelMath::PutUInt15(octant, block, Tables::FakeBT709::g_rounding16[ParallelMath::Extract(lookupIndex, block)]);
|
|
|
|
quantizedBase[0] = quantizedBase[0] + (octant & ParallelMath::MakeUInt15(1));
|
|
quantizedBase[1] = quantizedBase[1] + (ParallelMath::RightShift(octant, 1) & ParallelMath::MakeUInt15(1));
|
|
quantizedBase[2] = quantizedBase[2] + (ParallelMath::RightShift(octant, 2) & ParallelMath::MakeUInt15(1));
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
quantized[ch] = ParallelMath::Min(quantizedBase[ch], upperBound);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ResolveTHFakeBT709Rounding(MUInt15 quantized[3], const MUInt15 targets[3], const MUInt15 &granularity)
|
|
{
|
|
MFloat lowOctantRGBFloat[3];
|
|
MFloat highOctantRGBFloat[3];
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 unquantized = (quantized[ch] << 4) | quantized[ch];
|
|
MUInt15 unquantizedNext = ParallelMath::Min(ParallelMath::MakeUInt15(255), unquantized + ParallelMath::MakeUInt15(17));
|
|
|
|
lowOctantRGBFloat[ch] = ParallelMath::ToFloat(ParallelMath::CompactMultiply(unquantized, granularity) << 1);
|
|
highOctantRGBFloat[ch] = ParallelMath::ToFloat(ParallelMath::CompactMultiply(unquantizedNext, granularity) << 1);
|
|
}
|
|
|
|
MFloat bestError = ParallelMath::MakeFloat(FLT_MAX);
|
|
MUInt15 bestOctant = ParallelMath::MakeUInt15(0);
|
|
|
|
MFloat cumulativeYUV[3];
|
|
ConvertToFakeBT709(cumulativeYUV, ParallelMath::ToFloat(targets[0]), ParallelMath::ToFloat(targets[1]), ParallelMath::ToFloat(targets[2]));
|
|
|
|
for (uint16_t octant = 0; octant < 8; octant++)
|
|
{
|
|
const MFloat &r = (octant & 1) ? highOctantRGBFloat[0] : lowOctantRGBFloat[0];
|
|
const MFloat &g = (octant & 2) ? highOctantRGBFloat[1] : lowOctantRGBFloat[1];
|
|
const MFloat &b = (octant & 4) ? highOctantRGBFloat[2] : lowOctantRGBFloat[2];
|
|
|
|
MFloat octantYUV[3];
|
|
ConvertToFakeBT709(octantYUV, r, g, b);
|
|
|
|
MFloat delta[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
delta[ch] = octantYUV[ch] - cumulativeYUV[ch];
|
|
|
|
MFloat error = delta[0] * delta[0] + delta[1] + delta[1] + delta[2] * delta[2];
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestError));
|
|
ParallelMath::ConditionalSet(bestOctant, errorBetter, ParallelMath::MakeUInt15(octant));
|
|
bestError = ParallelMath::Min(error, bestError);
|
|
}
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
quantized[ch] = quantized[ch] + (ParallelMath::RightShift(bestOctant, ch) & ParallelMath::MakeUInt15(1));
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ConvertToFakeBT709(MFloat yuv[3], const MUInt15 color[3])
|
|
{
|
|
MFloat floatRGB[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
floatRGB[ch] = ParallelMath::ToFloat(color[ch]);
|
|
|
|
ConvertToFakeBT709(yuv, floatRGB);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ConvertToFakeBT709(MFloat yuv[3], const MFloat color[3])
|
|
{
|
|
ConvertToFakeBT709(yuv, color[0], color[1], color[2]);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ConvertToFakeBT709(MFloat yuv[3], const MFloat &pr, const MFloat &pg, const MFloat &pb)
|
|
{
|
|
MFloat r = pr;
|
|
MFloat g = pg;
|
|
MFloat b = pb;
|
|
|
|
yuv[0] = r * 0.368233989135369f + g * 1.23876274963149f + b * 0.125054068802017f;
|
|
yuv[1] = r * 0.5f - g * 0.4541529f - b * 0.04584709f;
|
|
yuv[2] = r * -0.081014709086133f - g * 0.272538676238785f + b * 0.353553390593274f;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ConvertFromFakeBT709(MFloat rgb[3], const MFloat yuv[3])
|
|
{
|
|
MFloat yy = yuv[0] * 0.57735026466774571071f;
|
|
MFloat u = yuv[1];
|
|
MFloat v = yuv[2];
|
|
|
|
rgb[0] = yy + u * 1.5748000207960953486f;
|
|
rgb[1] = yy - u * 0.46812425854364753669f - v * 0.26491652528157560861f;
|
|
rgb[2] = yy + v * 2.6242146882856944069f;
|
|
}
|
|
|
|
|
|
void cvtt::Internal::ETCComputer::QuantizeETC2Alpha(int tableIndex, const MUInt15& value, const MUInt15& baseValue, const MUInt15& multiplier, bool is11Bit, bool isSigned, MUInt15& outIndexes, MUInt15& outQuantizedValues)
|
|
{
|
|
MSInt16 offset = ParallelMath::LosslessCast<MSInt16>::Cast(value) - ParallelMath::LosslessCast<MSInt16>::Cast(baseValue);
|
|
MSInt16 offsetTimes2 = offset + offset;
|
|
|
|
// ETC2's offset tables all have a reflect about 0.5*multiplier
|
|
MSInt16 offsetAboutReflectorTimes2 = offsetTimes2 + ParallelMath::LosslessCast<MSInt16>::Cast(multiplier);
|
|
|
|
MUInt15 absOffsetAboutReflectorTimes2 = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Abs(offsetAboutReflectorTimes2));
|
|
MUInt15 lookupIndex = ParallelMath::RightShift(absOffsetAboutReflectorTimes2, 1);
|
|
|
|
MUInt15 positiveIndex;
|
|
MUInt15 positiveOffsetUnmultiplied;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t blockLookupIndex = ParallelMath::Extract(lookupIndex, block) / ParallelMath::Extract(multiplier, block);
|
|
if (blockLookupIndex >= Tables::ETC2::g_alphaRoundingTableWidth)
|
|
blockLookupIndex = Tables::ETC2::g_alphaRoundingTableWidth - 1;
|
|
uint16_t index = Tables::ETC2::g_alphaRoundingTables[tableIndex][blockLookupIndex];
|
|
ParallelMath::PutUInt15(positiveIndex, block, index);
|
|
ParallelMath::PutUInt15(positiveOffsetUnmultiplied, block, Tables::ETC2::g_alphaModifierTablePositive[tableIndex][index]);
|
|
|
|
// TODO: This is suboptimal when the offset is capped. We should detect 0 and 255 values and always map them to the maximum offsets.
|
|
// Doing that will also affect refinement though.
|
|
}
|
|
|
|
MSInt16 signBits = ParallelMath::RightShift(offsetAboutReflectorTimes2, 15);
|
|
MSInt16 offsetUnmultiplied = ParallelMath::LosslessCast<MSInt16>::Cast(positiveOffsetUnmultiplied) ^ signBits;
|
|
MSInt16 quantizedOffset = ParallelMath::CompactMultiply(offsetUnmultiplied, multiplier);
|
|
|
|
MSInt16 offsetValue = ParallelMath::LosslessCast<MSInt16>::Cast(baseValue) + quantizedOffset;
|
|
|
|
if (is11Bit)
|
|
{
|
|
if (isSigned)
|
|
outQuantizedValues = ParallelMath::Min(ParallelMath::MakeUInt15(2047), ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(1), offsetValue)));
|
|
else
|
|
outQuantizedValues = ParallelMath::Min(ParallelMath::MakeUInt15(2047), ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), offsetValue)));
|
|
}
|
|
else
|
|
outQuantizedValues = ParallelMath::Min(ParallelMath::MakeUInt15(255), ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::Max(ParallelMath::MakeSInt16(0), offsetValue)));
|
|
|
|
MUInt15 indexSub = ParallelMath::LosslessCast<MUInt15>::Cast(signBits) & ParallelMath::MakeUInt15(4);
|
|
|
|
outIndexes = positiveIndex + ParallelMath::MakeUInt15(4) - indexSub;
|
|
}
|
|
|
|
|
|
void cvtt::Internal::ETCComputer::EmitTModeBlock(uint8_t *outputBuffer, const ParallelMath::ScalarUInt16 lineColor[3], const ParallelMath::ScalarUInt16 isolatedColor[3], int32_t packedSelectors, ParallelMath::ScalarUInt16 table, bool opaque)
|
|
{
|
|
static const int selectorOrder[] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
|
|
|
|
uint32_t lowBits = 0;
|
|
uint32_t highBits = 0;
|
|
|
|
int rh = ((isolatedColor[0] >> 2) & 3);
|
|
int rl = (isolatedColor[0] & 3);
|
|
|
|
if (rh + rl < 4)
|
|
{
|
|
// Overflow low
|
|
highBits |= 1 << (58 - 32);
|
|
}
|
|
else
|
|
{
|
|
// Overflow high
|
|
highBits |= 7 << (61 - 32);
|
|
}
|
|
|
|
highBits |= rh << (59 - 32);
|
|
highBits |= rl << (56 - 32);
|
|
highBits |= isolatedColor[1] << (52 - 32);
|
|
highBits |= isolatedColor[2] << (48 - 32);
|
|
highBits |= lineColor[0] << (44 - 32);
|
|
highBits |= lineColor[1] << (40 - 32);
|
|
highBits |= lineColor[2] << (36 - 32);
|
|
highBits |= ((table >> 1) & 3) << (34 - 32);
|
|
if (opaque)
|
|
highBits |= 1 << (33 - 32);
|
|
highBits |= (table & 1) << (32 - 32);
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
int sel = (packedSelectors >> (2 * selectorOrder[px])) & 3;
|
|
if ((sel & 0x1) != 0)
|
|
lowBits |= (1 << px);
|
|
if ((sel & 0x2) != 0)
|
|
lowBits |= (1 << (16 + px));
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
outputBuffer[i] = (highBits >> (24 - i * 8)) & 0xff;
|
|
for (int i = 0; i < 4; i++)
|
|
outputBuffer[i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::EmitHModeBlock(uint8_t *outputBuffer, const ParallelMath::ScalarUInt16 blockColors[2], ParallelMath::ScalarUInt16 sectorBits, ParallelMath::ScalarUInt16 signBits, ParallelMath::ScalarUInt16 table, bool opaque)
|
|
{
|
|
if (blockColors[0] == blockColors[1])
|
|
{
|
|
// Base colors are the same.
|
|
// If the table low bit isn't 1, then we can't encode this, because swapping the block colors will have no effect
|
|
// on their order.
|
|
// Instead, we encode this as T mode where all of the indexes are on the line.
|
|
|
|
ParallelMath::ScalarUInt16 lineColor[3];
|
|
ParallelMath::ScalarUInt16 isolatedColor[3];
|
|
|
|
lineColor[0] = isolatedColor[0] = (blockColors[0] >> 10) & 0x1f;
|
|
lineColor[1] = isolatedColor[1] = (blockColors[0] >> 5) & 0x1f;
|
|
lineColor[2] = isolatedColor[2] = (blockColors[0] >> 0) & 0x1f;
|
|
|
|
int32_t packedSelectors = 0x55555555;
|
|
for (int px = 0; px < 16; px++)
|
|
packedSelectors |= ((signBits >> px) & 1) << ((px * 2) + 1);
|
|
|
|
EmitTModeBlock(outputBuffer, lineColor, isolatedColor, packedSelectors, table, opaque);
|
|
return;
|
|
}
|
|
|
|
static const int selectorOrder[] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
|
|
|
|
int16_t colors[2][3];
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
colors[sector][ch] = (blockColors[sector] >> ((2 - ch) * 5)) & 15;
|
|
}
|
|
|
|
uint32_t lowBits = 0;
|
|
uint32_t highBits = 0;
|
|
|
|
if (((table & 1) == 1) != (blockColors[0] > blockColors[1]))
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
std::swap(colors[0][ch], colors[1][ch]);
|
|
sectorBits ^= 0xffff;
|
|
}
|
|
|
|
int r1 = colors[0][0];
|
|
int g1a = colors[0][1] >> 1;
|
|
int g1b = (colors[0][1] & 1);
|
|
int b1a = colors[0][2] >> 3;
|
|
int b1b = colors[0][2] & 7;
|
|
int r2 = colors[1][0];
|
|
int g2 = colors[1][1];
|
|
int b2 = colors[1][2];
|
|
|
|
// Avoid overflowing R
|
|
if ((g1a & 4) != 0 && r1 + g1a < 8)
|
|
highBits |= 1 << (63 - 32);
|
|
|
|
int fakeDG = b1b >> 1;
|
|
int fakeG = b1a | (g1b << 1);
|
|
|
|
if (fakeG + fakeDG < 4)
|
|
{
|
|
// Overflow low
|
|
highBits |= 1 << (50 - 32);
|
|
}
|
|
else
|
|
{
|
|
// Overflow high
|
|
highBits |= 7 << (53 - 32);
|
|
}
|
|
|
|
int da = (table >> 2) & 1;
|
|
int db = (table >> 1) & 1;
|
|
|
|
highBits |= r1 << (59 - 32);
|
|
highBits |= g1a << (56 - 32);
|
|
highBits |= g1b << (52 - 32);
|
|
highBits |= b1a << (51 - 32);
|
|
highBits |= b1b << (47 - 32);
|
|
highBits |= r2 << (43 - 32);
|
|
highBits |= g2 << (39 - 32);
|
|
highBits |= b2 << (35 - 32);
|
|
highBits |= da << (34 - 32);
|
|
if (opaque)
|
|
highBits |= 1 << (33 - 32);
|
|
highBits |= db << (32 - 32);
|
|
|
|
for (int px = 0; px < 16; px++)
|
|
{
|
|
int sectorBit = (sectorBits >> selectorOrder[px]) & 1;
|
|
int signBit = (signBits >> selectorOrder[px]) & 1;
|
|
|
|
lowBits |= (signBit << px);
|
|
lowBits |= (sectorBit << (16 + px));
|
|
}
|
|
|
|
uint8_t *output = outputBuffer;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
output[i] = (highBits >> (24 - i * 8)) & 0xff;
|
|
for (int i = 0; i < 4; i++)
|
|
output[i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::EmitETC1Block(uint8_t *outputBuffer, int blockBestFlip, int blockBestD, const int blockBestColors[2][3], const int blockBestTables[2], const ParallelMath::ScalarUInt16 blockBestSelectors[2], bool transparent)
|
|
{
|
|
uint32_t highBits = 0;
|
|
uint32_t lowBits = 0;
|
|
|
|
if (blockBestD == 0)
|
|
{
|
|
highBits |= blockBestColors[0][0] << 28;
|
|
highBits |= blockBestColors[1][0] << 24;
|
|
highBits |= blockBestColors[0][1] << 20;
|
|
highBits |= blockBestColors[1][1] << 16;
|
|
highBits |= blockBestColors[0][2] << 12;
|
|
highBits |= blockBestColors[1][2] << 8;
|
|
}
|
|
else
|
|
{
|
|
highBits |= blockBestColors[0][0] << 27;
|
|
highBits |= ((blockBestColors[1][0] - blockBestColors[0][0]) & 7) << 24;
|
|
highBits |= blockBestColors[0][1] << 19;
|
|
highBits |= ((blockBestColors[1][1] - blockBestColors[0][1]) & 7) << 16;
|
|
highBits |= blockBestColors[0][2] << 11;
|
|
highBits |= ((blockBestColors[1][2] - blockBestColors[0][2]) & 7) << 8;
|
|
}
|
|
|
|
highBits |= (blockBestTables[0] << 5);
|
|
highBits |= (blockBestTables[1] << 2);
|
|
if (!transparent)
|
|
highBits |= (blockBestD << 1);
|
|
highBits |= blockBestFlip;
|
|
|
|
const uint8_t modifierCodes[4] = { 3, 2, 0, 1 };
|
|
|
|
uint8_t unpackedSelectors[16];
|
|
uint8_t unpackedSelectorCodes[16];
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
int blockSectorBestSelectors = blockBestSelectors[sector];
|
|
|
|
for (int px = 0; px < 8; px++)
|
|
{
|
|
int selector = (blockSectorBestSelectors >> (2 * px)) & 3;
|
|
unpackedSelectorCodes[g_flipTables[blockBestFlip][sector][px]] = modifierCodes[selector];
|
|
unpackedSelectors[g_flipTables[blockBestFlip][sector][px]] = selector;
|
|
}
|
|
}
|
|
|
|
const int pixelSelectorOrder[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
|
|
|
|
int lowBitOffset = 0;
|
|
for (int sb = 0; sb < 2; sb++)
|
|
for (int px = 0; px < 16; px++)
|
|
lowBits |= ((unpackedSelectorCodes[pixelSelectorOrder[px]] >> sb) & 1) << (px + sb * 16);
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
outputBuffer[i] = (highBits >> (24 - i * 8)) & 0xff;
|
|
for (int i = 0; i < 4; i++)
|
|
outputBuffer[i + 4] = (lowBits >> (24 - i * 8)) & 0xff;
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::CompressETC1BlockInternal(MFloat &bestTotalError, uint8_t *outputBuffer, const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], DifferentialResolveStorage &drs, const Options &options, bool punchthrough)
|
|
{
|
|
int numTries = 0;
|
|
|
|
MUInt15 zeroU15 = ParallelMath::MakeUInt15(0);
|
|
MUInt16 zeroU16 = ParallelMath::MakeUInt16(0);
|
|
|
|
MUInt15 bestColors[2] = { zeroU15, zeroU15 };
|
|
MUInt16 bestSelectors[2] = { zeroU16, zeroU16 };
|
|
MUInt15 bestTables[2] = { zeroU15, zeroU15 };
|
|
MUInt15 bestFlip = zeroU15;
|
|
MUInt15 bestD = zeroU15;
|
|
|
|
MUInt15 sectorPixels[2][2][8][3];
|
|
MFloat sectorPreWeightedPixels[2][2][8][3];
|
|
MUInt15 sectorCumulative[2][2][3];
|
|
|
|
ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
|
|
|
|
for (int flip = 0; flip < 2; flip++)
|
|
{
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
sectorCumulative[flip][sector][ch] = zeroU15;
|
|
|
|
for (int px = 0; px < 8; px++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 pixelChannelValue = pixels[g_flipTables[flip][sector][px]][ch];
|
|
sectorPixels[flip][sector][px][ch] = pixelChannelValue;
|
|
sectorPreWeightedPixels[flip][sector][px][ch] = preWeightedPixels[g_flipTables[flip][sector][px]][ch];
|
|
sectorCumulative[flip][sector][ch] = sectorCumulative[flip][sector][ch] + pixelChannelValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static const MSInt16 modifierTables[8][4] =
|
|
{
|
|
{ ParallelMath::MakeSInt16(-8), ParallelMath::MakeSInt16(-2), ParallelMath::MakeSInt16(2), ParallelMath::MakeSInt16(8) },
|
|
{ ParallelMath::MakeSInt16(-17), ParallelMath::MakeSInt16(-5), ParallelMath::MakeSInt16(5), ParallelMath::MakeSInt16(17) },
|
|
{ ParallelMath::MakeSInt16(-29), ParallelMath::MakeSInt16(-9), ParallelMath::MakeSInt16(9), ParallelMath::MakeSInt16(29) },
|
|
{ ParallelMath::MakeSInt16(-42), ParallelMath::MakeSInt16(-13), ParallelMath::MakeSInt16(13), ParallelMath::MakeSInt16(42) },
|
|
{ ParallelMath::MakeSInt16(-60), ParallelMath::MakeSInt16(-18), ParallelMath::MakeSInt16(18), ParallelMath::MakeSInt16(60) },
|
|
{ ParallelMath::MakeSInt16(-80), ParallelMath::MakeSInt16(-24), ParallelMath::MakeSInt16(24), ParallelMath::MakeSInt16(80) },
|
|
{ ParallelMath::MakeSInt16(-106), ParallelMath::MakeSInt16(-33), ParallelMath::MakeSInt16(33), ParallelMath::MakeSInt16(106) },
|
|
{ ParallelMath::MakeSInt16(-183), ParallelMath::MakeSInt16(-47), ParallelMath::MakeSInt16(47), ParallelMath::MakeSInt16(183) },
|
|
};
|
|
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
int minD = punchthrough ? 1 : 0;
|
|
|
|
for (int flip = 0; flip < 2; flip++)
|
|
{
|
|
drs.diffNumAttempts[0] = drs.diffNumAttempts[1] = zeroU15;
|
|
|
|
MFloat bestIndError[2] = { ParallelMath::MakeFloat(FLT_MAX), ParallelMath::MakeFloat(FLT_MAX) };
|
|
MUInt16 bestIndSelectors[2] = { ParallelMath::MakeUInt16(0), ParallelMath::MakeUInt16(0) };
|
|
MUInt15 bestIndColors[2] = { zeroU15, zeroU15 };
|
|
MUInt15 bestIndTable[2] = { zeroU15, zeroU15 };
|
|
|
|
for (int d = minD; d < 2; d++)
|
|
{
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
const int16_t *potentialOffsets = cvtt::Tables::ETC1::g_potentialOffsets4;
|
|
|
|
for (int table = 0; table < 8; table++)
|
|
{
|
|
int16_t numOffsets = *potentialOffsets++;
|
|
|
|
MUInt15 possibleColors[cvtt::Tables::ETC1::g_maxPotentialOffsets];
|
|
|
|
MUInt15 quantized[3];
|
|
for (int oi = 0; oi < numOffsets; oi++)
|
|
{
|
|
if (!isFakeBT709)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
// cu is in range 0..2040
|
|
MUInt15 cu15 = ParallelMath::Min(
|
|
ParallelMath::MakeUInt15(2040),
|
|
ParallelMath::ToUInt15(
|
|
ParallelMath::Max(
|
|
ParallelMath::MakeSInt16(0),
|
|
ParallelMath::LosslessCast<MSInt16>::Cast(sectorCumulative[flip][sector][ch]) + ParallelMath::MakeSInt16(potentialOffsets[oi])
|
|
)
|
|
)
|
|
);
|
|
|
|
if (d == 1)
|
|
{
|
|
//quantized[ch] = (cu * 31 + (cu >> 3) + 1024) >> 11;
|
|
quantized[ch] = ParallelMath::ToUInt15(
|
|
ParallelMath::RightShift(
|
|
(ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3)) + ParallelMath::MakeUInt16(1024)
|
|
, 11)
|
|
);
|
|
}
|
|
else
|
|
{
|
|
//quantized[ch] = (cu * 30 + (cu >> 3) + 2048) >> 12;
|
|
quantized[ch] = ParallelMath::ToUInt15(
|
|
ParallelMath::RightShift(
|
|
(ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15 << 1) + ParallelMath::LosslessCast<MUInt16>::Cast(ParallelMath::RightShift(cu15, 3)) + ParallelMath::MakeUInt16(2048)
|
|
, 12)
|
|
);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
MUInt15 offsetCumulative[3];
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
// cu is in range 0..2040
|
|
MUInt15 cu15 = ParallelMath::Min(
|
|
ParallelMath::MakeUInt15(2040),
|
|
ParallelMath::ToUInt15(
|
|
ParallelMath::Max(
|
|
ParallelMath::MakeSInt16(0),
|
|
ParallelMath::LosslessCast<MSInt16>::Cast(sectorCumulative[flip][sector][ch]) + ParallelMath::MakeSInt16(potentialOffsets[oi])
|
|
)
|
|
)
|
|
);
|
|
|
|
offsetCumulative[ch] = cu15;
|
|
}
|
|
|
|
if ((options.flags & cvtt::Flags::ETC_FakeBT709Accurate) != 0)
|
|
ResolveHalfBlockFakeBT709RoundingAccurate(quantized, offsetCumulative, d == 1);
|
|
else
|
|
ResolveHalfBlockFakeBT709RoundingFast(quantized, offsetCumulative, d == 1);
|
|
}
|
|
|
|
possibleColors[oi] = quantized[0] | (quantized[1] << 5) | (quantized[2] << 10);
|
|
}
|
|
|
|
potentialOffsets += numOffsets;
|
|
|
|
ParallelMath::UInt15 numUniqueColors;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t blockNumUniqueColors = 1;
|
|
for (int i = 1; i < numOffsets; i++)
|
|
{
|
|
uint16_t color = ParallelMath::Extract(possibleColors[i], block);
|
|
if (color != ParallelMath::Extract(possibleColors[blockNumUniqueColors - 1], block))
|
|
ParallelMath::PutUInt15(possibleColors[blockNumUniqueColors++], block, color);
|
|
}
|
|
|
|
ParallelMath::PutUInt15(numUniqueColors, block, blockNumUniqueColors);
|
|
}
|
|
|
|
int maxUniqueColors = ParallelMath::Extract(numUniqueColors, 0);
|
|
for (int block = 1; block < ParallelMath::ParallelSize; block++)
|
|
maxUniqueColors = std::max<int>(maxUniqueColors, ParallelMath::Extract(numUniqueColors, block));
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t fillColor = ParallelMath::Extract(possibleColors[0], block);
|
|
for (int i = ParallelMath::Extract(numUniqueColors, block); i < maxUniqueColors; i++)
|
|
ParallelMath::PutUInt15(possibleColors[i], block, fillColor);
|
|
}
|
|
|
|
for (int i = 0; i < maxUniqueColors; i++)
|
|
{
|
|
MFloat error = ParallelMath::MakeFloatZero();
|
|
MUInt16 selectors = ParallelMath::MakeUInt16(0);
|
|
MUInt15 quantized = possibleColors[i];
|
|
TestHalfBlock(error, selectors, quantized, sectorPixels[flip][sector], sectorPreWeightedPixels[flip][sector], modifierTables[table], d == 1, options);
|
|
|
|
if (d == 0)
|
|
{
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(error, bestIndError[sector]));
|
|
if (ParallelMath::AnySet(errorBetter))
|
|
{
|
|
bestIndError[sector] = ParallelMath::Min(error, bestIndError[sector]);
|
|
ParallelMath::ConditionalSet(bestIndSelectors[sector], errorBetter, selectors);
|
|
ParallelMath::ConditionalSet(bestIndColors[sector], errorBetter, quantized);
|
|
ParallelMath::ConditionalSet(bestIndTable[sector], errorBetter, ParallelMath::MakeUInt15(table));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ParallelMath::Int16CompFlag isInBounds = ParallelMath::Less(ParallelMath::MakeUInt15(i), numUniqueColors);
|
|
|
|
MUInt15 storageIndexes = drs.diffNumAttempts[sector];
|
|
drs.diffNumAttempts[sector] = drs.diffNumAttempts[sector] + ParallelMath::SelectOrZero(isInBounds, ParallelMath::MakeUInt15(1));
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int storageIndex = ParallelMath::Extract(storageIndexes, block);
|
|
|
|
ParallelMath::PutFloat(drs.diffErrors[sector][storageIndex], block, ParallelMath::Extract(error, block));
|
|
ParallelMath::PutUInt16(drs.diffSelectors[sector][storageIndex], block, ParallelMath::Extract(selectors, block));
|
|
ParallelMath::PutUInt15(drs.diffColors[sector][storageIndex], block, ParallelMath::Extract(quantized, block));
|
|
ParallelMath::PutUInt15(drs.diffTables[sector][storageIndex], block, table);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (d == 0)
|
|
{
|
|
MFloat bestIndErrorTotal = bestIndError[0] + bestIndError[1];
|
|
ParallelMath::Int16CompFlag errorBetter = ParallelMath::FloatFlagToInt16(ParallelMath::Less(bestIndErrorTotal, bestTotalError));
|
|
if (ParallelMath::AnySet(errorBetter))
|
|
{
|
|
bestIsThisMode = bestIsThisMode | errorBetter;
|
|
|
|
bestTotalError = ParallelMath::Min(bestTotalError, bestIndErrorTotal);
|
|
ParallelMath::ConditionalSet(bestFlip, errorBetter, ParallelMath::MakeUInt15(flip));
|
|
ParallelMath::ConditionalSet(bestD, errorBetter, ParallelMath::MakeUInt15(d));
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
ParallelMath::ConditionalSet(bestColors[sector], errorBetter, bestIndColors[sector]);
|
|
ParallelMath::ConditionalSet(bestSelectors[sector], errorBetter, bestIndSelectors[sector]);
|
|
ParallelMath::ConditionalSet(bestTables[sector], errorBetter, bestIndTable[sector]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ParallelMath::Int16CompFlag canIgnoreSector[2] = { ParallelMath::MakeBoolInt16(false), ParallelMath::MakeBoolInt16(false) };
|
|
FindBestDifferentialCombination(flip, d, canIgnoreSector, bestIsThisMode, bestTotalError, bestFlip, bestD, bestColors, bestSelectors, bestTables, drs);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (!ParallelMath::Extract(bestIsThisMode, block))
|
|
continue;
|
|
|
|
uint32_t highBits = 0;
|
|
uint32_t lowBits = 0;
|
|
|
|
int blockBestFlip = ParallelMath::Extract(bestFlip, block);
|
|
int blockBestD = ParallelMath::Extract(bestD, block);
|
|
int blockBestTables[2] = { ParallelMath::Extract(bestTables[0], block), ParallelMath::Extract(bestTables[1], block) };
|
|
ParallelMath::ScalarUInt16 blockBestSelectors[2] = { ParallelMath::Extract(bestSelectors[0], block), ParallelMath::Extract(bestSelectors[1], block) };
|
|
|
|
int colors[2][3];
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
int sectorColor = ParallelMath::Extract(bestColors[sector], block);
|
|
for (int ch = 0; ch < 3; ch++)
|
|
colors[sector][ch] = (sectorColor >> (ch * 5)) & 31;
|
|
}
|
|
|
|
EmitETC1Block(outputBuffer + block * 8, blockBestFlip, blockBestD, colors, blockBestTables, blockBestSelectors, false);
|
|
}
|
|
}
|
|
|
|
|
|
void cvtt::Internal::ETCComputer::CompressETC1PunchthroughBlockInternal(MFloat &bestTotalError, uint8_t *outputBuffer, const MUInt15 pixels[16][3], const MFloat preWeightedPixels[16][3], const ParallelMath::Int16CompFlag isTransparent[16], DifferentialResolveStorage &drs, const Options &options)
|
|
{
|
|
int numTries = 0;
|
|
|
|
MUInt15 zeroU15 = ParallelMath::MakeUInt15(0);
|
|
MUInt16 zeroU16 = ParallelMath::MakeUInt16(0);
|
|
|
|
MUInt15 bestColors[2] = { zeroU15, zeroU15 };
|
|
MUInt16 bestSelectors[2] = { zeroU16, zeroU16 };
|
|
MUInt15 bestTables[2] = { zeroU15, zeroU15 };
|
|
MUInt15 bestFlip = zeroU15;
|
|
|
|
MUInt15 sectorPixels[2][2][8][3];
|
|
ParallelMath::Int16CompFlag sectorTransparent[2][2][8];
|
|
MFloat sectorPreWeightedPixels[2][2][8][3];
|
|
MUInt15 sectorCumulative[2][2][3];
|
|
|
|
ParallelMath::Int16CompFlag bestIsThisMode = ParallelMath::MakeBoolInt16(false);
|
|
|
|
for (int flip = 0; flip < 2; flip++)
|
|
{
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
sectorCumulative[flip][sector][ch] = zeroU15;
|
|
|
|
for (int px = 0; px < 8; px++)
|
|
{
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
MUInt15 pixelChannelValue = pixels[g_flipTables[flip][sector][px]][ch];
|
|
sectorPixels[flip][sector][px][ch] = pixelChannelValue;
|
|
sectorPreWeightedPixels[flip][sector][px][ch] = preWeightedPixels[g_flipTables[flip][sector][px]][ch];
|
|
sectorCumulative[flip][sector][ch] = sectorCumulative[flip][sector][ch] + pixelChannelValue;
|
|
}
|
|
|
|
sectorTransparent[flip][sector][px] = isTransparent[g_flipTables[flip][sector][px]];
|
|
}
|
|
}
|
|
}
|
|
|
|
static const MUInt15 modifiers[8] =
|
|
{
|
|
ParallelMath::MakeUInt15(8),
|
|
ParallelMath::MakeUInt15(17),
|
|
ParallelMath::MakeUInt15(29),
|
|
ParallelMath::MakeUInt15(42),
|
|
ParallelMath::MakeUInt15(60),
|
|
ParallelMath::MakeUInt15(80),
|
|
ParallelMath::MakeUInt15(106),
|
|
ParallelMath::MakeUInt15(183),
|
|
};
|
|
|
|
bool isFakeBT709 = ((options.flags & cvtt::Flags::ETC_UseFakeBT709) != 0);
|
|
|
|
const int maxSectorCumulativeOffsets = 17;
|
|
|
|
for (int flip = 0; flip < 2; flip++)
|
|
{
|
|
ParallelMath::Int16CompFlag canIgnoreSector[2] = { ParallelMath::MakeBoolInt16(true), ParallelMath::MakeBoolInt16(false) };
|
|
|
|
for (int sector = 0; sector < 2; sector++)
|
|
for (int px = 0; px < 8; px++)
|
|
canIgnoreSector[sector] = canIgnoreSector[sector] & sectorTransparent[flip][sector][px];
|
|
|
|
drs.diffNumAttempts[0] = drs.diffNumAttempts[1] = zeroU15;
|
|
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
MUInt15 sectorNumOpaque = ParallelMath::MakeUInt15(0);
|
|
for (int px = 0; px < 8; px++)
|
|
sectorNumOpaque = sectorNumOpaque + ParallelMath::SelectOrZero(sectorTransparent[flip][sector][px], ParallelMath::MakeUInt15(1));
|
|
|
|
int sectorMaxOpaque = 0;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
sectorMaxOpaque = std::max<int>(sectorMaxOpaque, ParallelMath::Extract(sectorNumOpaque, block));
|
|
|
|
int sectorNumOpaqueMultipliers = sectorMaxOpaque * 2 + 1;
|
|
|
|
MUInt15 sectorNumOpaqueDenominator = ParallelMath::Max(ParallelMath::MakeUInt15(1), sectorNumOpaque) << 8;
|
|
MUInt15 sectorNumOpaqueAddend = sectorNumOpaque << 7;
|
|
|
|
MSInt16 sectorNumOpaqueSigned = ParallelMath::LosslessCast<MSInt16>::Cast(sectorNumOpaque);
|
|
MSInt16 negSectorNumOpaqueSigned = ParallelMath::MakeSInt16(0) - sectorNumOpaqueSigned;
|
|
|
|
MUInt15 sectorCumulativeMax = ParallelMath::LosslessCast<MUInt15>::Cast(ParallelMath::CompactMultiply(ParallelMath::MakeUInt15(255), sectorNumOpaque));
|
|
|
|
for (int table = 0; table < 8; table++)
|
|
{
|
|
MUInt15 possibleColors[maxSectorCumulativeOffsets];
|
|
|
|
MUInt15 quantized[3];
|
|
for (int om = -sectorMaxOpaque; om <= sectorMaxOpaque; om++)
|
|
{
|
|
MSInt16 clampedOffsetMult = ParallelMath::Max(ParallelMath::Min(ParallelMath::MakeSInt16(om), sectorNumOpaqueSigned), negSectorNumOpaqueSigned);
|
|
MSInt16 offset = ParallelMath::CompactMultiply(clampedOffsetMult, modifiers[table]);
|
|
|
|
for (int ch = 0; ch < 3; ch++)
|
|
{
|
|
// cu is in range 0..255*numOpaque (at most 0..2040)
|
|
MUInt15 cu15 = ParallelMath::Min(
|
|
sectorCumulativeMax,
|
|
ParallelMath::ToUInt15(
|
|
ParallelMath::Max(
|
|
ParallelMath::MakeSInt16(0),
|
|
ParallelMath::LosslessCast<MSInt16>::Cast(sectorCumulative[flip][sector][ch]) + offset
|
|
)
|
|
)
|
|
);
|
|
|
|
//quantized[ch] = (cu * 31 + (cu >> 3) + (numOpaque * 128)) / (numOpaque * 256)
|
|
MUInt16 cuTimes31 = (ParallelMath::LosslessCast<MUInt16>::Cast(cu15) << 5) - ParallelMath::LosslessCast<MUInt16>::Cast(cu15);
|
|
MUInt15 cuDiv8 = ParallelMath::RightShift(cu15, 3);
|
|
MUInt16 numerator = cuTimes31 + ParallelMath::LosslessCast<MUInt16>::Cast(cuDiv8 + sectorNumOpaqueAddend);
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
ParallelMath::PutUInt15(quantized[ch], block, ParallelMath::Extract(numerator, block) / ParallelMath::Extract(sectorNumOpaqueDenominator, block));
|
|
}
|
|
|
|
possibleColors[om + sectorMaxOpaque] = quantized[0] | (quantized[1] << 5) | (quantized[2] << 10);
|
|
}
|
|
|
|
ParallelMath::UInt15 numUniqueColors;
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t blockNumUniqueColors = 1;
|
|
for (int i = 1; i < sectorNumOpaqueMultipliers; i++)
|
|
{
|
|
uint16_t color = ParallelMath::Extract(possibleColors[i], block);
|
|
if (color != ParallelMath::Extract(possibleColors[blockNumUniqueColors - 1], block))
|
|
ParallelMath::PutUInt15(possibleColors[blockNumUniqueColors++], block, color);
|
|
}
|
|
|
|
ParallelMath::PutUInt15(numUniqueColors, block, blockNumUniqueColors);
|
|
}
|
|
|
|
int maxUniqueColors = ParallelMath::Extract(numUniqueColors, 0);
|
|
for (int block = 1; block < ParallelMath::ParallelSize; block++)
|
|
maxUniqueColors = std::max<int>(maxUniqueColors, ParallelMath::Extract(numUniqueColors, block));
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
uint16_t fillColor = ParallelMath::Extract(possibleColors[0], block);
|
|
for (int i = ParallelMath::Extract(numUniqueColors, block); i < maxUniqueColors; i++)
|
|
ParallelMath::PutUInt15(possibleColors[i], block, fillColor);
|
|
}
|
|
|
|
for (int i = 0; i < maxUniqueColors; i++)
|
|
{
|
|
MFloat error = ParallelMath::MakeFloatZero();
|
|
MUInt16 selectors = ParallelMath::MakeUInt16(0);
|
|
MUInt15 quantized = possibleColors[i];
|
|
TestHalfBlockPunchthrough(error, selectors, quantized, sectorPixels[flip][sector], sectorPreWeightedPixels[flip][sector], sectorTransparent[flip][sector], modifiers[table], options);
|
|
|
|
ParallelMath::Int16CompFlag isInBounds = ParallelMath::Less(ParallelMath::MakeUInt15(i), numUniqueColors);
|
|
|
|
MUInt15 storageIndexes = drs.diffNumAttempts[sector];
|
|
drs.diffNumAttempts[sector] = drs.diffNumAttempts[sector] + ParallelMath::SelectOrZero(isInBounds, ParallelMath::MakeUInt15(1));
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
int storageIndex = ParallelMath::Extract(storageIndexes, block);
|
|
|
|
ParallelMath::PutFloat(drs.diffErrors[sector][storageIndex], block, ParallelMath::Extract(error, block));
|
|
ParallelMath::PutUInt16(drs.diffSelectors[sector][storageIndex], block, ParallelMath::Extract(selectors, block));
|
|
ParallelMath::PutUInt15(drs.diffColors[sector][storageIndex], block, ParallelMath::Extract(quantized, block));
|
|
ParallelMath::PutUInt15(drs.diffTables[sector][storageIndex], block, table);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MUInt15 bestDDummy = ParallelMath::MakeUInt15(0);
|
|
FindBestDifferentialCombination(flip, 1, canIgnoreSector, bestIsThisMode, bestTotalError, bestFlip, bestDDummy, bestColors, bestSelectors, bestTables, drs);
|
|
}
|
|
|
|
for (int block = 0; block < ParallelMath::ParallelSize; block++)
|
|
{
|
|
if (!ParallelMath::Extract(bestIsThisMode, block))
|
|
continue;
|
|
|
|
int blockBestColors[2][3];
|
|
int blockBestTables[2];
|
|
ParallelMath::ScalarUInt16 blockBestSelectors[2];
|
|
for (int sector = 0; sector < 2; sector++)
|
|
{
|
|
int sectorColor = ParallelMath::Extract(bestColors[sector], block);
|
|
for (int ch = 0; ch < 3; ch++)
|
|
blockBestColors[sector][ch] = (sectorColor >> (ch * 5)) & 31;
|
|
|
|
blockBestTables[sector] = ParallelMath::Extract(bestTables[sector], block);
|
|
blockBestSelectors[sector] = ParallelMath::Extract(bestSelectors[sector], block);
|
|
}
|
|
|
|
EmitETC1Block(outputBuffer + block * 8, ParallelMath::Extract(bestFlip, block), 1, blockBestColors, blockBestTables, blockBestSelectors, true);
|
|
}
|
|
}
|
|
|
|
|
|
cvtt::ETC1CompressionData *cvtt::Internal::ETCComputer::AllocETC1Data(cvtt::Kernels::allocFunc_t allocFunc, void *context)
|
|
{
|
|
void *buffer = allocFunc(context, sizeof(cvtt::Internal::ETCComputer::ETC1CompressionDataInternal));
|
|
if (!buffer)
|
|
return NULL;
|
|
new (buffer) cvtt::Internal::ETCComputer::ETC1CompressionDataInternal(context);
|
|
return static_cast<ETC1CompressionData*>(buffer);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ReleaseETC1Data(ETC1CompressionData *compressionData, cvtt::Kernels::freeFunc_t freeFunc)
|
|
{
|
|
cvtt::Internal::ETCComputer::ETC1CompressionDataInternal* internalData = static_cast<cvtt::Internal::ETCComputer::ETC1CompressionDataInternal*>(compressionData);
|
|
void *context = internalData->m_context;
|
|
internalData->~ETC1CompressionDataInternal();
|
|
freeFunc(context, compressionData, sizeof(cvtt::Internal::ETCComputer::ETC1CompressionDataInternal));
|
|
}
|
|
|
|
cvtt::ETC2CompressionData *cvtt::Internal::ETCComputer::AllocETC2Data(cvtt::Kernels::allocFunc_t allocFunc, void *context, const cvtt::Options &options)
|
|
{
|
|
void *buffer = allocFunc(context, sizeof(cvtt::Internal::ETCComputer::ETC2CompressionDataInternal));
|
|
if (!buffer)
|
|
return NULL;
|
|
new (buffer) cvtt::Internal::ETCComputer::ETC2CompressionDataInternal(context, options);
|
|
return static_cast<ETC2CompressionData*>(buffer);
|
|
}
|
|
|
|
void cvtt::Internal::ETCComputer::ReleaseETC2Data(ETC2CompressionData *compressionData, cvtt::Kernels::freeFunc_t freeFunc)
|
|
{
|
|
cvtt::Internal::ETCComputer::ETC2CompressionDataInternal* internalData = static_cast<cvtt::Internal::ETCComputer::ETC2CompressionDataInternal*>(compressionData);
|
|
void *context = internalData->m_context;
|
|
internalData->~ETC2CompressionDataInternal();
|
|
freeFunc(context, compressionData, sizeof(cvtt::Internal::ETCComputer::ETC2CompressionDataInternal));
|
|
}
|
|
|
|
cvtt::Internal::ETCComputer::ETC2CompressionDataInternal::ETC2CompressionDataInternal(void *context, const cvtt::Options &options)
|
|
: m_context(context)
|
|
{
|
|
const float cd[3] = { options.redWeight, options.greenWeight, options.blueWeight };
|
|
const float rotCD[3] = { cd[1], cd[2], cd[0] };
|
|
|
|
const float offs = -(rotCD[0] * cd[0] + rotCD[1] * cd[1] + rotCD[2] * cd[2]) / (cd[0] * cd[0] + cd[1] * cd[1] + cd[2] * cd[2]);
|
|
|
|
const float chromaAxis0[3] = { rotCD[0] + cd[0] * offs, rotCD[1] + cd[1] * offs, rotCD[2] + cd[2] * offs };
|
|
|
|
const float chromaAxis1Unnormalized[3] =
|
|
{
|
|
chromaAxis0[1] * cd[2] - chromaAxis0[2] * cd[1],
|
|
chromaAxis0[2] * cd[0] - chromaAxis0[0] * cd[2],
|
|
chromaAxis0[0] * cd[1] - chromaAxis0[1] * cd[0]
|
|
};
|
|
|
|
const float ca0LengthSq = (chromaAxis0[0] * chromaAxis0[0] + chromaAxis0[1] * chromaAxis0[1] + chromaAxis0[2] * chromaAxis0[2]);
|
|
const float ca1UNLengthSq = (chromaAxis1Unnormalized[0] * chromaAxis1Unnormalized[0] + chromaAxis1Unnormalized[1] * chromaAxis1Unnormalized[1] + chromaAxis1Unnormalized[2] * chromaAxis1Unnormalized[2]);
|
|
const float lengthRatio = static_cast<float>(std::sqrt(ca0LengthSq / ca1UNLengthSq));
|
|
|
|
const float chromaAxis1[3] = { chromaAxis1Unnormalized[0] * lengthRatio, chromaAxis1Unnormalized[1] * lengthRatio, chromaAxis1Unnormalized[2] * lengthRatio };
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
m_chromaSideAxis0[i] = chromaAxis0[i];
|
|
m_chromaSideAxis1[i] = chromaAxis1[i];
|
|
}
|
|
}
|
|
|
|
#endif
|